Answer :

Given:
- Radius of the cylinder, [tex]\( r = 13 \, \text{m} \)[/tex]
- Volume of the cylinder, [tex]\( V = 19 \, \text{m}^3 \)[/tex]

We need to find the height of the cylinder, [tex]\( h \)[/tex], rounded to the nearest whole number. We use the formula for the volume of a cylinder:

[tex]\[ V = \pi r^2 h \][/tex]

Rearranging for [tex]\( h \)[/tex]:

[tex]\[ h = \frac{V}{\pi r^2} \][/tex]

Substituting the given values into the formula:

[tex]\[ h = \frac{19}{\pi \times 13^2} \][/tex]

First, calculate [tex]\( 13^2 \)[/tex]:

[tex]\[ 13^2 = 169 \][/tex]

Now, we substitute this back into the equation:

[tex]\[ h = \frac{19}{\pi \times 169} \][/tex]

Let's break this down step by step:

1. Calculate [tex]\( \pi \times 169 \)[/tex]:
- The value of [tex]\( \pi \)[/tex] (pi) is approximately 3.14159.
- So, [tex]\( \pi \times 169 = 3.14159 \times 169 \approx 530.89441 \)[/tex]

2. Divide the volume by this result:

[tex]\[ h = \frac{19}{530.89441} \approx 0.03578631856504155 \][/tex]

The height [tex]\( h \)[/tex] of the cylinder, before rounding, is approximately 0.03578631856504155 meters.

Finally, we round this to the nearest whole number:

[tex]\[ h \approx 0 \][/tex]

So, the height of the cylinder, rounded to the nearest whole number, is 0 meters.