Factor the following expressions:

1. [tex]\( a x + a y + a z \)[/tex]

2. [tex]\( \frac{\frac{a}{x} + \frac{a}{y} + \frac{a}{z}}{a(x + y + z)} \)[/tex]

3. [tex]\( 4 x^3 + 8 x^2 + 12 x \)[/tex]

4. [tex]\( \frac{x + x + x}{\frac{x + x + x}{x + x + x + 4}} \)[/tex]

5. [tex]\( 6 x + 18 y - 9 z \)[/tex]

6. [tex]\( 5 - 3 a^3 + 6 a^2 + 12 \)[/tex]



Answer :

Sure, let's walk through each of these steps one by one:

### Step 1: Factoring [tex]\(a(x + y + z)\)[/tex]

We start by factoring the expression [tex]\(a(x + y + z)\)[/tex]. Factoring means to express the expression as a product of its factors.

Given Expression: [tex]\(a(x + y + z)\)[/tex]

Factored Form:
Since [tex]\(a\)[/tex] is a common factor in each term of the expression, we can factor out [tex]\(a\)[/tex]:
[tex]\[ a(x + y + z) \][/tex]

So, the factored form is:
[tex]\[ a(x + y + z) \][/tex]

### Step 2: Simplify the Expression
[tex]\[ \frac{\frac{a}{x}+\frac{a}{y}+\frac{a}{z}}{a(x+y+z)} \][/tex]

Let's simplify this expression step by step:

Given Expression:
[tex]\[ \frac{\frac{a}{x}+\frac{a}{y}+\frac{a}{z}}{a(x+y+z)} \][/tex]

1. Combine the numerator:
[tex]\[ \frac{a}{x}+\frac{a}{y}+\frac{a}{z} = a\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \][/tex]

2. Rewrite the original expression:
[tex]\[ \frac{a\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)}{a(x+y+z)} \][/tex]

3. Cancel out the common factor [tex]\(a\)[/tex] from the numerator and the denominator:
[tex]\[ \frac{\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)}{x+y+z} \][/tex]

4. Express the simplified form:
[tex]\[ \frac{x y + x z + y z}{x y z (x + y + z)} \][/tex]

So, the simplified form is:
[tex]\[ \frac{x y + x z + y z}{x y z (x + y + z)} \][/tex]

### Step 3: Factor [tex]\(4x^3 + 8x^2 + 12x\)[/tex]

We factor out the greatest common factor (GCF) from the expression:

Given Expression: [tex]\(4x^3 + 8x^2 + 12x\)[/tex]

1. Identify the GCF: The GCF is [tex]\(4x\)[/tex].

2. Factor out the GCF:
[tex]\[ 4x^3 + 8x^2 + 12x = 4x(x^2 + 2x + 3) \][/tex]

So, the factored form is:
[tex]\[ 4x(x^2 + 2x + 3) \][/tex]

### Step 4: Simplify the Fraction
[tex]\[ \frac{x+x+x}{x+x+x+4} \][/tex]

First, let's simplify the numerator and the denominator separately:

Given Fraction:
[tex]\[ \frac{x+x+x}{x+x+x+4} \][/tex]

1. Combine like terms:
[tex]\[ \frac{3x}{3x + 4} \][/tex]

So, the simplified fraction is:
[tex]\[ \frac{3x}{3x + 4} \][/tex]

### Step 5: Factor [tex]\(6x + 18y - 9z\)[/tex]

We factor out the greatest common factor (GCF):

Given Expression: [tex]\(6x + 18y - 9z\)[/tex]

1. Identify the GCF: The GCF is [tex]\(3\)[/tex].

2. Factor out the GCF:
[tex]\[ 6x + 18y - 9z = 3(2x + 6y - 3z) \][/tex]

So, the factored form is:
[tex]\[ 3(2x + 6y - 3z) \][/tex]

### Step 6: Factor [tex]\(-3a^3 + 6a^2 + 12\)[/tex]

We factor out the greatest common factor (GCF):

Given Expression: [tex]\(-3a^3 + 6a^2 + 12\)[/tex]

1. Identify the GCF: The GCF is [tex]\(-3\)[/tex].

2. Factor out the GCF:
[tex]\[ -3a^3 + 6a^2 + 12 = -3(a^3 - 2a^2 - 4) \][/tex]

So, the factored form is:
[tex]\[ -3(a^3 - 2a^2 - 4) \][/tex]

These are the complete steps and detailed solutions for the given expressions.