1. [tex]\[2 \frac{1}{4} \times 1 \frac{1}{4} = \frac{9}{4} \times \frac{5}{4} = \frac{45}{16}\][/tex]

2. [tex]\[2 \frac{1}{3} \times 2 \frac{2}{9} = \frac{7}{3} \times \frac{20}{9} = \frac{140}{27}\][/tex]

3. [tex]\[1 \frac{2}{5} \times 1 \frac{1}{3} = \frac{7}{5} \times \frac{4}{3} = \frac{28}{15}\][/tex]

4. [tex]\[1 \frac{1}{9} \times 1 \frac{2}{4} = \frac{10}{9} \times \frac{6}{4} = \frac{60}{36}\][/tex]



Answer :

Sure, I'd be glad to help with this question step-by-step.

### Question 1:
Given the multiplication:
[tex]\[ 2 \frac{1}{4} \times 1 \frac{1}{4} \][/tex]

1. Convert the mixed numbers to improper fractions:
- [tex]\( 2 \frac{1}{4} \)[/tex] is [tex]\(\frac{9}{4}\)[/tex]
- [tex]\(1 \frac{1}{4}\)[/tex] is [tex]\(\frac{5}{4}\)[/tex]

2. Multiply the fractions:
[tex]\[\frac{9}{4} \times \frac{5}{4} = \frac{45}{16} = 2.8125\][/tex]

### Question 2:
Given the multiplication:
[tex]\[ 2 \frac{1}{3} \times 2 \frac{2}{9} \][/tex]

1. Convert the mixed numbers to improper fractions:
- [tex]\( 2 \frac{1}{3} \)[/tex] is [tex]\(\frac{7}{3}\)[/tex]
- [tex]\(2 \frac{2}{9}\)[/tex] is [tex]\(\frac{20}{9}\)[/tex]

2. Multiply the fractions:
[tex]\[\frac{7}{3} \times \frac{20}{9} = \frac{140}{27} \approx 5.185\][/tex]

### Question 3:
Given the multiplication:
[tex]\[ 1 \frac{2}{5} \times 1 \frac{1}{3} \][/tex]

1. Convert the mixed numbers to improper fractions:
- [tex]\( 1 \frac{2}{5} \)[/tex] is [tex]\(\frac{7}{5}\)[/tex]
- [tex]\(1 \frac{1}{3}\)[/tex] is [tex]\(\frac{4}{3}\)[/tex]

2. Multiply the fractions:
[tex]\[\frac{7}{5} \times \frac{4}{3} = \frac{28}{15} \approx 1.867\][/tex]

### Question 4:
Given the multiplication:
[tex]\[ 1 \frac{1}{9} \times 1 \frac{2}{4} \][/tex]

1. Convert the mixed numbers to improper fractions:
- [tex]\( 1 \frac{1}{9} \)[/tex] is [tex]\(\frac{10}{9}\)[/tex]
- [tex]\(1 \frac{2}{4}\)[/tex] is [tex]\(\frac{6}{4}\)[/tex]

2. Multiply the fractions:
[tex]\[\frac{10}{9} \times \frac{6}{4} = \frac{60}{36} = \frac{5}{3} \approx 1.667\][/tex]

These are the results for each multiplication problem.