Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
Do not translate the question or any part of the question.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[ 8 \, \overline{14053} \][/tex]

Response:



Answer :

Sure, let's solve the division of [tex]\( 14,053 \)[/tex] by [tex]\( 8 \)[/tex] step-by-step.

1. Determine how many times 8 fits into the first digit(s) of the dividend (1).
- 8 does not fit into the first digit [tex]\( 1 \)[/tex].
- Combine the first two digits: [tex]\( 14 \)[/tex].
- [tex]\( 8 \)[/tex] fits into [tex]\( 14 \)[/tex] once (because [tex]\( 8 \times 1 = 8 \)[/tex]).

2. Subtract the product from the combined digits:
[tex]\[ 14 - 8 = 6 \][/tex]

3. Bring down the next digit from the dividend (0) to get [tex]\( 60 \)[/tex], and determine how many times 8 fits into [tex]\( 60 \)[/tex]:
- [tex]\( 8 \times 7 = 56 \)[/tex]. So, 8 fits into [tex]\( 60 \)[/tex] seven times.

4. Subtract the product from [tex]\( 60 \)[/tex]:
[tex]\[ 60 - 56 = 4 \][/tex]

5. Bring down the next digit from the dividend (5) to make [tex]\( 45 \)[/tex]:
- [tex]\( 8 \times 5 = 40 \)[/tex]. So, 8 fits into [tex]\( 45 \)[/tex] five times.

6. Subtract the product from [tex]\( 45 \)[/tex]:
[tex]\[ 45 - 40 = 5 \][/tex]

7. Bring down the last digit from the dividend (3) to make [tex]\( 53 \)[/tex]:
- [tex]\( 8 \times 6 = 48 \)[/tex]. So, 8 fits into [tex]\( 53 \)[/tex] six times.

8. Subtract the product from [tex]\( 53 \)[/tex]:
[tex]\[ 53 - 48 = 5 \][/tex]

The quotient is formed by the sequence of numbers obtained: [tex]\( 1, 7, 5, 6 \)[/tex].

Hence, the quotient is [tex]\( 1,756 \)[/tex] and the remainder is [tex]\( 5 \)[/tex].

So, the result of dividing [tex]\( 14,053 \)[/tex] by [tex]\( 8 \)[/tex] is:
[tex]\[ 14,053 \div 8 = 1,756 \text{ R } 5 \][/tex]

Which means:
[tex]\[ 14,053 = 8 \times 1,756 + 5 \][/tex]

Thus, the quotient is [tex]\( 1,756 \)[/tex] and the remainder is [tex]\( 5 \)[/tex].