Look at this expression:

[tex]\[ -3a + 4 + 5a - 7 + a \][/tex]

Which of the following is equivalent to the expression?

A. [tex]\(3a + 3\)[/tex]
B. [tex]\(3a - 3\)[/tex]
C. [tex]\(9a + 3\)[/tex]
D. [tex]\(9a - 3\)[/tex]



Answer :

Let's simplify the given expression step-by-step to find out which option is equivalent to it.

The given expression is:
[tex]\[ -3a + 4 + 5a - 7 + a \][/tex]

1. Combine the like terms for [tex]\( a \)[/tex]:

Here, we have three terms involving [tex]\( a \)[/tex]:
[tex]\[ -3a + 5a + a \][/tex]

Simplifying this:
[tex]\[ -3a + 5a + a = (-3 + 5 + 1)a = (2 + 1)a = 3a \][/tex]

2. Combine the constant terms:

Here, we have two constant terms:
[tex]\[ 4 - 7 \][/tex]

Simplifying this:
[tex]\[ 4 - 7 = -3 \][/tex]

3. Combine the simplified like terms:

Now, we put together the simplified terms:
[tex]\[ 3a - 3 \][/tex]

So, the simplified expression is:
[tex]\[ 3a - 3 \][/tex]

Based on the given options:

A. [tex]\( 3a + 3 \)[/tex]

B. [tex]\( 3a - 3 \)[/tex]

C. [tex]\( 9a + 3 \)[/tex]

D. [tex]\( 9a - 3 \)[/tex]

The correct option is:
[tex]\[ \boxed{B} \: 3a - 3 \][/tex]