Answer :
To solve this problem, we need to find the expression for profit and calculate the profit when 75 pairs of jeans are sold.
1. Define the revenue function [tex]\( R(x) \)[/tex]:
[tex]\[ R(x) = 2x^2 + 17x - 175 \][/tex]
2. Define the cost function [tex]\( C(x) \)[/tex]:
[tex]\[ C(x) = 2x^2 - 3x - 125 \][/tex]
3. Determine the profit function [tex]\( P(x) \)[/tex]:
Profit is the difference between revenue and cost:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
Substitute the given functions into the profit equation:
[tex]\[ P(x) = (2x^2 + 17x - 175) - (2x^2 - 3x - 125) \][/tex]
4. Simplify the profit function:
[tex]\[ P(x) = 2x^2 + 17x - 175 - 2x^2 + 3x + 125 \][/tex]
Combine like terms:
[tex]\[ P(x) = (2x^2 - 2x^2) + (17x + 3x) + (-175 + 125) \][/tex]
[tex]\[ P(x) = 20x - 50 \][/tex]
Therefore, the expression used to find profit is:
[tex]\[ P(x) = 20x - 50 \][/tex]
5. Calculate the profit when 75 pairs of jeans are sold:
Substitute [tex]\( x = 75 \)[/tex] into the profit function:
[tex]\[ P(75) = 20 \cdot 75 - 50 \][/tex]
[tex]\[ P(75) = 1500 - 50 \][/tex]
[tex]\[ P(75) = 1450 \][/tex]
So, the expression to find the profit is [tex]\( 20x - 50 \)[/tex], and when 75 pairs of jeans are sold, the profit is [tex]$1450. The correct choice is: \[ 20x - 50 ; \$[/tex] 1,450
\]
1. Define the revenue function [tex]\( R(x) \)[/tex]:
[tex]\[ R(x) = 2x^2 + 17x - 175 \][/tex]
2. Define the cost function [tex]\( C(x) \)[/tex]:
[tex]\[ C(x) = 2x^2 - 3x - 125 \][/tex]
3. Determine the profit function [tex]\( P(x) \)[/tex]:
Profit is the difference between revenue and cost:
[tex]\[ P(x) = R(x) - C(x) \][/tex]
Substitute the given functions into the profit equation:
[tex]\[ P(x) = (2x^2 + 17x - 175) - (2x^2 - 3x - 125) \][/tex]
4. Simplify the profit function:
[tex]\[ P(x) = 2x^2 + 17x - 175 - 2x^2 + 3x + 125 \][/tex]
Combine like terms:
[tex]\[ P(x) = (2x^2 - 2x^2) + (17x + 3x) + (-175 + 125) \][/tex]
[tex]\[ P(x) = 20x - 50 \][/tex]
Therefore, the expression used to find profit is:
[tex]\[ P(x) = 20x - 50 \][/tex]
5. Calculate the profit when 75 pairs of jeans are sold:
Substitute [tex]\( x = 75 \)[/tex] into the profit function:
[tex]\[ P(75) = 20 \cdot 75 - 50 \][/tex]
[tex]\[ P(75) = 1500 - 50 \][/tex]
[tex]\[ P(75) = 1450 \][/tex]
So, the expression to find the profit is [tex]\( 20x - 50 \)[/tex], and when 75 pairs of jeans are sold, the profit is [tex]$1450. The correct choice is: \[ 20x - 50 ; \$[/tex] 1,450
\]