\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline -2 & 3 \\
\hline -1 & -2 \\
\hline 0 & -3 \\
\hline 1 & 0 \\
\hline 2 & 7 \\
\hline
\end{tabular}

What is the rate of change for the interval between 0 and 2 for the quadratic equation [tex]f(x) = 2x^2 + x - 3[/tex] represented in the table?

A. [tex]$\frac{1}{5}$[/tex]

B. 4

C. 5

D. 10



Answer :

To determine the rate of change for the interval between [tex]\(x = 0\)[/tex] and [tex]\(x = 2\)[/tex] for the quadratic equation [tex]\(f(x) = 2x^2 + x - 3\)[/tex], we follow these steps:

1. Identify the function values at the given points:
- At [tex]\(x = 0\)[/tex], using the table, we see that [tex]\(f(0) = -3\)[/tex].
- At [tex]\(x = 2\)[/tex], using the table, we see that [tex]\(f(2) = 7\)[/tex].

2. Use the function values to calculate the rate of change:
The formula for the rate of change (or the average rate of change) over an interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Rate of Change} = \frac{f(b) - f(a)}{b - a} \][/tex]

For our specific case:
[tex]\[ a = 0 \quad \text{and} \quad b = 2 \][/tex]
So, we plug in the function values:
[tex]\[ \text{Rate of Change} = \frac{f(2) - f(0)}{2 - 0} \][/tex]

Substituting the values we found:
[tex]\[ \text{Rate of Change} = \frac{7 - (-3)}{2 - 0} = \frac{7 + 3}{2} = \frac{10}{2} = 5 \][/tex]

Therefore, the rate of change for the interval between [tex]\(x = 0\)[/tex] and [tex]\(x = 2\)[/tex] for the function [tex]\(f(x) = 2x^2 + x - 3\)[/tex] is [tex]\(\boxed{5}\)[/tex].