Two of the numbers below are multiplied together. Which pair of numbers gives the lowest answer?

A. [tex]\(-5\)[/tex]
B. [tex]\(-8\)[/tex]
C. [tex]\(4\)[/tex]
D. [tex]\(9\)[/tex]



Answer :

To determine which pair of numbers, when multiplied together, gives the lowest product, we must evaluate the products of all possible pairs from the given set of numbers [tex]\(-5\)[/tex], [tex]\(-8\)[/tex], [tex]\(4\)[/tex], and [tex]\(9\)[/tex].

1. First, consider the pair [tex]\((-5, -8)\)[/tex]:
[tex]\[ (-5) \times (-8) = 40 \][/tex]

2. Next, consider the pair [tex]\((-5, 4)\)[/tex]:
[tex]\[ (-5) \times 4 = -20 \][/tex]

3. Then, consider the pair [tex]\((-5, 9)\)[/tex]:
[tex]\[ (-5) \times 9 = -45 \][/tex]

4. Now, consider the pair [tex]\((-8, 4)\)[/tex]:
[tex]\[ (-8) \times 4 = -32 \][/tex]

5. Next, consider the pair [tex]\((-8, 9)\)[/tex]:
[tex]\[ (-8) \times 9 = -72 \][/tex]

6. Finally, consider the pair [tex]\((4, 9)\)[/tex]:
[tex]\[ 4 \times 9 = 36 \][/tex]

By comparing all these results:
- 40
- -20
- -45
- -32
- -72
- 36

The smallest (i.e., lowest) product is [tex]\(-72\)[/tex].

Hence, the pair of numbers that results in the lowest product is [tex]\((-8, 9)\)[/tex], and their product is [tex]\(-72\)[/tex].