Answer :

Sure, let's walk through the steps to multiply the expression [tex]\(x^2 - 2x - 3\)[/tex] by [tex]\(5x\)[/tex].

1. Write down the expressions:
- The first expression is [tex]\(x^2 - 2x - 3\)[/tex].
- The second expression is [tex]\(5x\)[/tex].

2. Apply the distributive property:
To multiply [tex]\(x^2 - 2x - 3\)[/tex] by [tex]\(5x\)[/tex], we use the distributive property, distributing [tex]\(5x\)[/tex] to each term in the polynomial [tex]\(x^2 - 2x - 3\)[/tex]:

[tex]\[ (x^2 - 2x - 3) \times 5x = (x^2 \times 5x) + (-2x \times 5x) + (-3 \times 5x) \][/tex]

3. Perform the individual multiplications:
- Multiply the first term: [tex]\(x^2 \times 5x = 5x^3\)[/tex].
- Multiply the second term: [tex]\(-2x \times 5x = -10x^2\)[/tex].
- Multiply the third term: [tex]\(-3 \times 5x = -15x\)[/tex].

4. Combine the results:
Now, put them all together:

[tex]\[ 5x^3 - 10x^2 - 15x \][/tex]

Therefore, the product of multiplying the expression [tex]\(x^2 - 2x - 3\)[/tex] by [tex]\(5x\)[/tex] is:

[tex]\[ 5x^3 - 10x^2 - 15x \][/tex]