Find the square of the following expressions using the given formulas:

1. [tex](4 \sin 2)^2[/tex]
2. [tex]\left(3x - \frac{1}{3\pi}\right)^2 - 5[/tex]
3. [tex](4x - 3y)^2[/tex]

Additional problems:

4. Find the square of the following expressions using the formulas:

a. [tex](3x + y)^2[/tex]
b. [tex](5m + 4)^2[/tex]
c. [tex](3x + 2x)^2[/tex]
d. [tex](2x - 3y)(2x - 9)[/tex]
e. [tex]ax^2 + 12x + 7[/tex]

(Note: This is assuming that the original intent was to find the squares of given algebraic expressions, and correcting for readability and mathematical formatting.)



Answer :

Certainly! Let's break down the solution to find the square of the given expression [tex]\( 4 \sin 2 \)[/tex].

1. Expression:
We start with the expression:

[tex]\[ 4 \sin(2) \][/tex]

2. Calculate the value of the expression:
The value of [tex]\( 4 \sin(2) \)[/tex] is:

[tex]\[ 4 \sin(2) \approx 3.637189707302727 \][/tex]

3. Square the expression:
We now need to find the square of the value:

[tex]\[ (4 \sin(2))^2 = (3.637189707302727)^2 \][/tex]

4. Result of squaring:
The result of squaring [tex]\( 3.637189707302727 \)[/tex] is:

[tex]\[ (3.637189707302727)^2 \approx 13.229148966908896 \][/tex]

So, the value of [tex]\( 4 \sin 2 \)[/tex] is approximately [tex]\( 3.637189707302727 \)[/tex] and its square is approximately [tex]\( 13.229148966908896 \)[/tex].