Here are two inequalities:

[tex]\[
\begin{array}{l}
-4 \leqslant x \leqslant 2 \\
7 \leqslant x + y \leqslant 12
\end{array}
\][/tex]

[tex]$x$[/tex] and [tex]$y$[/tex] are integers.

Work out the greatest possible value of [tex]$y - x$[/tex].



Answer :

To find the greatest possible value of [tex]\( y - x \)[/tex] given the constraints,
[tex]\[ -4 \leqslant x \leqslant 2 \quad \text{and} \quad 7 \leqslant x + y \leqslant 12, \][/tex]
we need to maximize [tex]\( y \)[/tex] while minimizing [tex]\( x \)[/tex].

### Step-by-Step Solution:

1. Determine the value of [tex]\( x \)[/tex]:
- Minimize [tex]\( x \)[/tex] to begin. The smallest value [tex]\( x \)[/tex] can take from the range is [tex]\( x = -4 \)[/tex].

2. Determine [tex]\( y \)[/tex]:
- Given [tex]\( x = -4 \)[/tex], use the inequality [tex]\( 7 \leqslant x + y \leqslant 12 \)[/tex].
- If [tex]\( x = -4 \)[/tex]:
[tex]\[ 7 \leqslant -4 + y \leqslant 12 \][/tex]
[tex]\[ 7 + 4 \leqslant y \leqslant 12 + 4 \][/tex]
[tex]\[ 11 \leqslant y \leqslant 16 \][/tex]
- The maximum value [tex]\( y \)[/tex] can take within this new range is [tex]\( y = 16 \)[/tex].

3. Calculate [tex]\( y - x \)[/tex]:
- With [tex]\( x = -4 \)[/tex] and [tex]\( y = 16 \)[/tex],
[tex]\[ y - x = 16 - (-4) = 16 + 4 = 20 \][/tex]

### Conclusion:
The greatest possible value of [tex]\( y - x \)[/tex] is [tex]\( 20 \)[/tex].

Thus, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that achieve this result are [tex]\( x = -4 \)[/tex] and [tex]\( y = 16 \)[/tex].