If [tex]\sin \theta + \cos \theta = \sqrt{2} \cos \theta[/tex], prove that [tex]\cos \theta - \sin \theta = \sqrt{2} \sin \theta[/tex].



Answer :

To prove that [tex]\(\cos \theta - \sin \theta = \sqrt{2} \sin \theta\)[/tex] given that [tex]\(\sin \theta + \cos \theta = \sqrt{2} \cos \theta\)[/tex], we can follow these steps:

1. Start from the given equation:
[tex]\[ \sin \theta + \cos \theta = \sqrt{2} \cos \theta \][/tex]

2. Isolate [tex]\(\sin \theta\)[/tex] by subtracting [tex]\(\cos \theta\)[/tex] from both sides:
[tex]\[ \sin \theta = \sqrt{2} \cos \theta - \cos \theta \][/tex]

3. Factor out [tex]\(\cos \theta\)[/tex]:
[tex]\[ \sin \theta = (\sqrt{2} - 1) \cos \theta \][/tex]

4. Now, let's consider the equation we need to prove:
[tex]\[ \cos \theta - \sin \theta = \sqrt{2} \sin \theta \][/tex]

5. Substitute the expression we found for [tex]\(\sin \theta\)[/tex] into this equation:
[tex]\[ \cos \theta - (\sqrt{2} - 1) \cos \theta = \sqrt{2} ((\sqrt{2} - 1) \cos \theta) \][/tex]

6. Simplify the left-hand side by distributing and combining like terms:
[tex]\[ \cos \theta - \sqrt{2} \cos \theta + \cos \theta = \cos \theta (1 + 1 - \sqrt{2}) \][/tex]
[tex]\[ 2 \cos \theta - \sqrt{2} \cos \theta \][/tex]

7. Simplify the right-hand side by distributing [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \sqrt{2} (\sqrt{2} - 1) \cos \theta = (\sqrt{2} \cdot \sqrt{2} - \sqrt{2}) \cos \theta \][/tex]
[tex]\[ (2 - \sqrt{2}) \cos \theta \][/tex]

8. We see that both sides of the equation are equal:
[tex]\[ 2 \cos \theta - \sqrt{2} \cos \theta = (2 - \sqrt{2}) \cos \theta \][/tex]

Thus, we have proven that:
[tex]\[ \cos \theta - \sin \theta = \sqrt{2} \sin \theta \][/tex]

Therefore, the statement is true based on the given condition.