Answer :
Sure, let's break down the problem step by step.
### Step-by-Step Solution:
1. Identify the Dimensions:
- The problem involves a cylindrical pencil holder with:
- Radius [tex]\( r = 10 \)[/tex] cm
- Height [tex]\( h = 15 \)[/tex] cm
2. Recognize Relevant Formula:
- To find the volume ([tex]\(v\)[/tex]) of a cylinder, we use the formula:
[tex]\[ v = \pi r^2 h \][/tex]
where [tex]\( \pi \)[/tex] (pi) is approximately 3.14.
3. Substitute the Given Values:
- Place the values of [tex]\( r \)[/tex] and [tex]\( h \)[/tex] into the formula:
[tex]\[ v = \pi \times (10 \text{ cm})^2 \times 15 \text{ cm} \][/tex]
- Calculate the square of the radius:
[tex]\[ v = \pi \times (100 \text{ cm}^2) \times 15 \text{ cm} \][/tex]
4. Perform the Multiplication:
- Multiply 100 cm² by 15 cm:
[tex]\[ v = \pi \times 1500 \text{ cm}^3 \][/tex]
- Multiply this result by π (3.14):
[tex]\[ v = 3.14 \times 1500 \text{ cm}^3 \][/tex]
5. Calculate the Final Volume:
- Compute the final multiplication:
[tex]\[ v = 4710 \text{ cm}^3 \][/tex]
Therefore, the volume of the cylindrical pencil holder is [tex]\( 4710 \)[/tex] cm³.
### Step-by-Step Solution:
1. Identify the Dimensions:
- The problem involves a cylindrical pencil holder with:
- Radius [tex]\( r = 10 \)[/tex] cm
- Height [tex]\( h = 15 \)[/tex] cm
2. Recognize Relevant Formula:
- To find the volume ([tex]\(v\)[/tex]) of a cylinder, we use the formula:
[tex]\[ v = \pi r^2 h \][/tex]
where [tex]\( \pi \)[/tex] (pi) is approximately 3.14.
3. Substitute the Given Values:
- Place the values of [tex]\( r \)[/tex] and [tex]\( h \)[/tex] into the formula:
[tex]\[ v = \pi \times (10 \text{ cm})^2 \times 15 \text{ cm} \][/tex]
- Calculate the square of the radius:
[tex]\[ v = \pi \times (100 \text{ cm}^2) \times 15 \text{ cm} \][/tex]
4. Perform the Multiplication:
- Multiply 100 cm² by 15 cm:
[tex]\[ v = \pi \times 1500 \text{ cm}^3 \][/tex]
- Multiply this result by π (3.14):
[tex]\[ v = 3.14 \times 1500 \text{ cm}^3 \][/tex]
5. Calculate the Final Volume:
- Compute the final multiplication:
[tex]\[ v = 4710 \text{ cm}^3 \][/tex]
Therefore, the volume of the cylindrical pencil holder is [tex]\( 4710 \)[/tex] cm³.