Answer :
Sure! Let's start with the given equations:
[tex]\[ x = \tan \theta + \sin \theta \][/tex]
[tex]\[ y = \tan \theta - \sin \theta \][/tex]
We need to show that [tex]\(x^2 - y^2 = 4 \sqrt{xy}\)[/tex].
1. Square both equations:
[tex]\[ x^2 = (\tan \theta + \sin \theta)^2 \][/tex]
[tex]\[ y^2 = (\tan \theta - \sin \theta)^2 \][/tex]
2. Expand the squares:
[tex]\[ x^2 = \tan^2 \theta + 2 \tan \theta \sin \theta + \sin^2 \theta \][/tex]
[tex]\[ y^2 = \tan^2 \theta - 2 \tan \theta \sin \theta + \sin^2 \theta \][/tex]
3. Subtract the second equation from the first:
[tex]\[ x^2 - y^2 = (\tan^2 \theta + 2 \tan \theta \sin \theta + \sin^2 \theta) - (\tan^2 \theta - 2 \tan \theta \sin \theta + \sin^2 \theta) \][/tex]
4. Simplify the expression:
[tex]\[ x^2 - y^2 = ( \tan^2 \theta + \sin^2 \theta ) + 2 \tan \theta \sin \theta - ( \tan^2 \theta + \sin^2 \theta ) + 2 \tan \theta \sin \theta \][/tex]
[tex]\[ x^2 - y^2 = 4 \tan \theta \sin \theta \][/tex]
5. Find an expression for [tex]\(xy\)[/tex] by multiplying [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ xy = (\tan \theta + \sin \theta)(\tan \theta - \sin \theta) \][/tex]
6. Expand the product:
[tex]\[ xy = \tan^2 \theta - \sin^2 \theta \][/tex]
7. Use the identity for [tex]\(\tan^2 \theta\)[/tex]:
Recall that [tex]\( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\)[/tex], so:
[tex]\[ xy = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta = \sin^2 \theta \left(\frac{1}{\cos^2 \theta} - 1 \right) \][/tex]
[tex]\[ xy = \sin^2 \theta \left(\frac{1 - \cos^2 \theta}{\cos^2 \theta} \right) \][/tex]
[tex]\[ xy = \sin^2 \theta \left(\frac{\sin^2 \theta}{\cos^2 \theta} \right) \][/tex]
[tex]\[ xy = \frac{\sin^4 \theta}{\cos^2 \theta} \][/tex]
8. Simplify:
[tex]\[ \sqrt{xy} = \sqrt{\frac{\sin^4 \theta}{\cos^2 \theta}} = \frac{\sin^2 \theta}{\cos \theta} \][/tex]
9. Find [tex]\(4 \sqrt{xy}\)[/tex]:
[tex]\[ 4 \sqrt{xy} = 4 \cdot \frac{\sin^2 \theta}{\cos \theta} = \frac{4 \tan \theta \sin \theta}{\zeta} \][/tex]
Combining all pieces, we have shown that
[tex]\[ x^2 - y^2 = 4 \sqrt{xy} \][/tex]
Hence, the identity is proved.
[tex]\[ x = \tan \theta + \sin \theta \][/tex]
[tex]\[ y = \tan \theta - \sin \theta \][/tex]
We need to show that [tex]\(x^2 - y^2 = 4 \sqrt{xy}\)[/tex].
1. Square both equations:
[tex]\[ x^2 = (\tan \theta + \sin \theta)^2 \][/tex]
[tex]\[ y^2 = (\tan \theta - \sin \theta)^2 \][/tex]
2. Expand the squares:
[tex]\[ x^2 = \tan^2 \theta + 2 \tan \theta \sin \theta + \sin^2 \theta \][/tex]
[tex]\[ y^2 = \tan^2 \theta - 2 \tan \theta \sin \theta + \sin^2 \theta \][/tex]
3. Subtract the second equation from the first:
[tex]\[ x^2 - y^2 = (\tan^2 \theta + 2 \tan \theta \sin \theta + \sin^2 \theta) - (\tan^2 \theta - 2 \tan \theta \sin \theta + \sin^2 \theta) \][/tex]
4. Simplify the expression:
[tex]\[ x^2 - y^2 = ( \tan^2 \theta + \sin^2 \theta ) + 2 \tan \theta \sin \theta - ( \tan^2 \theta + \sin^2 \theta ) + 2 \tan \theta \sin \theta \][/tex]
[tex]\[ x^2 - y^2 = 4 \tan \theta \sin \theta \][/tex]
5. Find an expression for [tex]\(xy\)[/tex] by multiplying [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ xy = (\tan \theta + \sin \theta)(\tan \theta - \sin \theta) \][/tex]
6. Expand the product:
[tex]\[ xy = \tan^2 \theta - \sin^2 \theta \][/tex]
7. Use the identity for [tex]\(\tan^2 \theta\)[/tex]:
Recall that [tex]\( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\)[/tex], so:
[tex]\[ xy = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta = \sin^2 \theta \left(\frac{1}{\cos^2 \theta} - 1 \right) \][/tex]
[tex]\[ xy = \sin^2 \theta \left(\frac{1 - \cos^2 \theta}{\cos^2 \theta} \right) \][/tex]
[tex]\[ xy = \sin^2 \theta \left(\frac{\sin^2 \theta}{\cos^2 \theta} \right) \][/tex]
[tex]\[ xy = \frac{\sin^4 \theta}{\cos^2 \theta} \][/tex]
8. Simplify:
[tex]\[ \sqrt{xy} = \sqrt{\frac{\sin^4 \theta}{\cos^2 \theta}} = \frac{\sin^2 \theta}{\cos \theta} \][/tex]
9. Find [tex]\(4 \sqrt{xy}\)[/tex]:
[tex]\[ 4 \sqrt{xy} = 4 \cdot \frac{\sin^2 \theta}{\cos \theta} = \frac{4 \tan \theta \sin \theta}{\zeta} \][/tex]
Combining all pieces, we have shown that
[tex]\[ x^2 - y^2 = 4 \sqrt{xy} \][/tex]
Hence, the identity is proved.