52. The value of [tex]\sqrt[3]{a^3} \times \sqrt[3]{-b^6}[/tex] is:

A. ab
B. [tex]a b^2[/tex]
C. [tex]-a b^2[/tex]
D. None of these

53. The numbers whose cube and cube root both are equal are:

A. 1
B. -1
C. Both (1) \& (2)
D. None of these



Answer :

Let's go through both questions step by step.

Question 52:

We are given the expression [tex]$\sqrt[3]{a^3} \times \sqrt[3]{-b^6}$[/tex] and need to simplify it.

1. First, consider [tex]$\sqrt[3]{a^3}$[/tex]. The cube root of [tex]$a^3$[/tex] is [tex]$a$[/tex], because:
[tex]\[ \sqrt[3]{a^3} = a \][/tex]

2. Now, consider [tex]$\sqrt[3]{-b^6}$[/tex]. The term [tex]$-b^6$[/tex] can be broken down as [tex]$(-1) \times (b^6)$[/tex]. The cube root of [tex]$b^6$[/tex] is [tex]$b^2$[/tex] (since [tex]$(b^2)^3 = b^6$[/tex]) and the cube root of [tex]$-1$[/tex] is [tex]$-1$[/tex]. Therefore:
[tex]\[ \sqrt[3]{-b^6} = \sqrt[3]{-1 \times b^6} = \sqrt[3]{-1} \times \sqrt[3]{b^6} = -1 \times b^2 = -b^2 \][/tex]

3. Combining these results, we have:
[tex]\[ \sqrt[3]{a^3} \times \sqrt[3]{-b^6} = a \times (-b^2) = -a b^2 \][/tex]

So, the value of [tex]$\sqrt[3]{a^3} \times \sqrt[3]{-b^6}$[/tex] is [tex]$-a b^2$[/tex]. Therefore, the correct option is:
[tex]\[ \text{(3) } -a b^2 \][/tex]

Question 53:

We need to find the numbers whose cube and cube root both are equal.

1. The cube and cube root of a number [tex]\( n \)[/tex] being the same means:
[tex]\[ n^3 = n \quad \text{and} \quad \sqrt[3]{n} = n \][/tex]

2. Let's test some simple numbers:
- For [tex]\( n = 1 \)[/tex]:
[tex]\[ 1^3 = 1 \quad \text{and} \quad \sqrt[3]{1} = 1 \][/tex]
Both conditions are satisfied for [tex]\( n = 1 \)[/tex].

- For [tex]\( n = -1 \)[/tex]:
[tex]\[ (-1)^3 = -1 \quad \text{and} \quad \sqrt[3]{-1} = -1 \][/tex]
Both conditions are satisfied for [tex]\( n = -1 \)[/tex].

3. Therefore, the numbers that satisfy these conditions are 1 and -1.

So, the numbers whose cube and cube root both are equal are 1 and -1. Therefore, the correct option is:
[tex]\[ \text{(3) Both (1) \& (2)} \][/tex]

In conclusion:
- For Question 52: The answer is [tex]\((3) -a b^2\)[/tex].
- For Question 53: The answer is [tex]\((3) Both (1) \& (2)\)[/tex].