What is the slope of the line that passes through the points [tex]$(-1, -7)$[/tex] and [tex]$(1, -13)$[/tex]? Write your answer in simplest form.

Answer:
[tex]\[\square\][/tex]



Answer :

To determine the slope of the line that passes through the points [tex]\((-1, -7)\)[/tex] and [tex]\( (1, -13) \)[/tex], we use the slope formula, which is

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Given the points [tex]\((-1, -7)\)[/tex] and [tex]\((1, -13)\)[/tex]:

1. Identify the coordinates:
- Point 1 [tex]\((x_1, y_1) = (-1, -7)\)[/tex]
- Point 2 [tex]\((x_2, y_2) = (1, -13)\)[/tex]

2. Substitute these values into the slope formula:

[tex]\[ m = \frac{-13 - (-7)}{1 - (-1 )} \][/tex]

3. Simplify the numerator and denominator:

[tex]\[ m = \frac{-13 + 7}{1 + 1} \][/tex]

4. Continue simplifying:

[tex]\[ m = \frac{-6}{2} \][/tex]

5. Reduce the fraction to its simplest form:

[tex]\[ m = -3 \][/tex]

Thus, the slope of the line that passes through the points [tex]\((-1, -7)\)[/tex] and [tex]\((1, -13)\)[/tex] is [tex]\(-3.0\)[/tex].

Answer Attempt:
[tex]\[ -3.0 \][/tex]