To determine the slope of the line that passes through the points [tex]\((-1, -7)\)[/tex] and [tex]\( (1, -13) \)[/tex], we use the slope formula, which is
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the points [tex]\((-1, -7)\)[/tex] and [tex]\((1, -13)\)[/tex]:
1. Identify the coordinates:
- Point 1 [tex]\((x_1, y_1) = (-1, -7)\)[/tex]
- Point 2 [tex]\((x_2, y_2) = (1, -13)\)[/tex]
2. Substitute these values into the slope formula:
[tex]\[
m = \frac{-13 - (-7)}{1 - (-1 )}
\][/tex]
3. Simplify the numerator and denominator:
[tex]\[
m = \frac{-13 + 7}{1 + 1}
\][/tex]
4. Continue simplifying:
[tex]\[
m = \frac{-6}{2}
\][/tex]
5. Reduce the fraction to its simplest form:
[tex]\[
m = -3
\][/tex]
Thus, the slope of the line that passes through the points [tex]\((-1, -7)\)[/tex] and [tex]\((1, -13)\)[/tex] is [tex]\(-3.0\)[/tex].
Answer Attempt:
[tex]\[
-3.0
\][/tex]