If possible, find the slope of the line passing through the points [tex]$(4,-2)$[/tex] and [tex][tex]$(-3,-9)$[/tex][/tex].

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The slope is [tex]\square[/tex].
(Type an integer or a simplified fraction.)

B. The slope is undefined.



Answer :

To determine the slope of the line passing through the points [tex]\((4, -2)\)[/tex] and [tex]\((-3, -9)\)[/tex], we can use the formula for the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Given the points [tex]\((4, -2)\)[/tex] and [tex]\((-3, -9)\)[/tex]:

1. Assign the coordinates:
[tex]\[ (x_1, y_1) = (4, -2) \\ (x_2, y_2) = (-3, -9) \][/tex]

2. Substitute the coordinates into the slope formula:
[tex]\[ m = \frac{-9 - (-2)}{-3 - 4} \][/tex]

3. Simplify the numerator and the denominator:
[tex]\[ m = \frac{-9 + 2}{-3 - 4} \][/tex]
[tex]\[ m = \frac{-7}{-7} \][/tex]

4. Simplify the fraction:
[tex]\[ m = 1.0 \][/tex]

Therefore, the slope of the line passing through the points [tex]\((4, -2)\)[/tex] and [tex]\((-3, -9)\)[/tex] is [tex]\(1.0\)[/tex].

So, the correct choice is:
A. The slope is [tex]\(1.0\)[/tex].