Use the table to answer the question.

You collected the following data about the colors of dresses at the prom.

\begin{tabular}{|r|c|c|c|c|}
\hline
Color & Red & Black & Blue & White & Other \\
\hline
Number & 14 & 37 & 22 & 56 & 33 \\
\hline
\end{tabular}

When making a pie chart for this data, what percentage of the dresses would the sector labeled "Red" include? Round to the nearest percent.

A. [tex]$9 \%$[/tex]
B. [tex]$14 \%$[/tex]
C. [tex]$23 \%$[/tex]
D. [tex]$25 \%$[/tex]



Answer :

To determine what percentage of the dresses are red, follow these steps:

1. Sum the total number of dresses:
[tex]\[ \text{Total number of dresses} = 14 \, (\text{red}) + 37 \, (\text{black}) + 22 \, (\text{blue}) + 56 \, (\text{white}) + 33 \, (\text{other}) \][/tex]
Adding these together:
[tex]\[ 14 + 37 + 22 + 56 + 33 = 162 \][/tex]
Thus, the total number of dresses is 162.

2. Calculate the percentage of red dresses:
[tex]\[ \text{Percentage of red dresses} = \left( \frac{\text{Number of red dresses}}{\text{Total number of dresses}} \right) \times 100 \% \][/tex]
Plugging in the values:
[tex]\[ \left( \frac{14}{162} \right) \times 100 \% \approx 8.6419753 \% \][/tex]

3. Round to the nearest percent:
[tex]\[ 8.6419753 \% \approx 9 \% \][/tex]

Therefore, when making a pie chart for this data, the sector labeled "Red" would include approximately [tex]$9 \%$[/tex] of the dresses. The correct answer is:
[tex]\[ 9 \% \][/tex]