Given the function defined in the table below, find the average rate of change, in simplest form, of the function over the interval [tex]$5 \leq x \leq 7$[/tex].

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
1 & 89 \\
\hline
3 & 57 \\
\hline
5 & 33 \\
\hline
7 & 17 \\
\hline
9 & 9 \\
\hline
11 & 9 \\
\hline
\end{tabular}
\][/tex]



Answer :

To determine the average rate of change of the function over the interval [tex]\(5 \leq x \leq 7\)[/tex], we need to follow these steps:

1. Identify the values of [tex]\(x\)[/tex] at the endpoints of the interval, which are [tex]\(x = 5\)[/tex] and [tex]\(x = 7\)[/tex].

2. Determine the corresponding function values from the table:
- [tex]\(f(5) = 33\)[/tex]
- [tex]\(f(7) = 17\)[/tex]

3. Use the formula for the average rate of change of the function [tex]\(f(x)\)[/tex] over the interval [tex]\([a, b]\)[/tex]:
[tex]\[ \text{Average rate of change} = \frac{f(b) - f(a)}{b - a} \][/tex]

4. Substitute [tex]\(a = 5\)[/tex], [tex]\(b = 7\)[/tex], [tex]\(f(5) = 33\)[/tex], and [tex]\(f(7) = 17\)[/tex] into the formula:
[tex]\[ \text{Average rate of change} = \frac{f(7) - f(5)}{7 - 5} \][/tex]
[tex]\[ \text{Average rate of change} = \frac{17 - 33}{7 - 5} \][/tex]

5. Simplify the numerator and denominator:
[tex]\[ \text{Average rate of change} = \frac{-16}{2} \][/tex]

6. Divide the numerator by the denominator to find the final answer:
[tex]\[ \text{Average rate of change} = -8 \][/tex]

Thus, the average rate of change of the function over the interval [tex]\(5 \leq x \leq 7\)[/tex] is [tex]\(-8\)[/tex].