Given the function defined in the table below, find the average rate of change, in simplest form, of the function over the interval [tex]$1 \leq x \leq 3$[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
0 & 4 \\
\hline
1 & 8 \\
\hline
2 & 16 \\
\hline
3 & 32 \\
\hline
\end{tabular}



Answer :

To find the average rate of change of the function over the interval [tex]\( 1 \leq x \leq 3 \)[/tex], we can use the following steps:

1. Identify the function values at the endpoints of the interval:
- The value of the function at [tex]\( x = 1 \)[/tex] is [tex]\( f(1) = 8 \)[/tex].
- The value of the function at [tex]\( x = 3 \)[/tex] is [tex]\( f(3) = 32 \)[/tex].

2. Use the formula for the average rate of change:
[tex]\[ \text{Average rate of change} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \][/tex]
Here, [tex]\( x_1 = 1 \)[/tex], [tex]\( x_2 = 3 \)[/tex], [tex]\( f(x_1) = 8 \)[/tex], and [tex]\( f(x_2) = 32 \)[/tex].

3. Plug the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{32 - 8}{3 - 1} \][/tex]

4. Simplify the expression:
[tex]\[ \text{Average rate of change} = \frac{24}{2} = 12 \][/tex]

Thus, the average rate of change of the function over the interval [tex]\( 1 \leq x \leq 3 \)[/tex] is [tex]\( 12 \)[/tex].