3. Resolver:
[tex]\[ 2-[4-(x-1)+2(x-3)] \geq x-[2-3x] \][/tex]

a) [tex]\(x \leq 1\)[/tex]
b) [tex]\(x \geq 1\)[/tex]
c) [tex]\(x \geq 0\)[/tex]
d) [tex]\(x \geq 4\)[/tex]
e) N.A.



Answer :

Let's start by solving the inequality step by step:

Given the inequality:
[tex]\[ 2 - [4 - (x - 1) + 2(x - 3)] \geq x - [2 - 3x] \][/tex]

First, simplify inside the brackets on both sides:

1. Simplify the expression inside the first set of brackets:
[tex]\[ 2 - \{4 - [x - 1 + 2(x - 3)]\} \][/tex]
[tex]\[ 2 - \{4 - [x - 1 + 2x - 6]\} \][/tex]
[tex]\[ 2 - \{4 - [3x - 7]\} \][/tex]
[tex]\[ 2 - \{4 - 3x + 7\} \][/tex]
[tex]\[ 2 - \{11 - 3x\} \][/tex]
[tex]\[ 2 - 11 + 3x \][/tex]
[tex]\[ 3x - 9 \][/tex]

2. Simplify the expression inside the second set of brackets:
[tex]\[ x - [2 - 3x] \][/tex]
[tex]\[ x - 2 + 3x \][/tex]
[tex]\[ 4x - 2 \][/tex]

Thus, the given inequality becomes:
[tex]\[ 3x - 9 \geq 4x - 2 \][/tex]

Now, solve for [tex]\(x\)[/tex]:

3. Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ -9 \geq x - 2 \][/tex]

4. Add 2 to both sides:
[tex]\[ -7 \geq x \][/tex]
or equivalently,
[tex]\[ x \leq -7 \][/tex]

So the solution to the inequality [tex]\( x \leq -7 \)[/tex].

Now, let's compare our solution with the given options:

a) [tex]\( x \leq 1 \)[/tex] ⇐ Doesn't match because our solution is more restrictive ([tex]\( x \leq -7 \)[/tex]).

b) [tex]\( x \geq 1 \)[/tex] ⇐ Doesn't match because [tex]\( x \leq -7 \)[/tex] is the opposite.

c) [tex]\( x \geq 0 \)[/tex] ⇐ Doesn't match because [tex]\( x \leq -7 \)[/tex].

d) [tex]\( x \geq 4 \)[/tex] ⇐ Doesn't match either.

e) N.A. ⇐ This is the only option that seems appropriate given our strict solution of [tex]\( x \leq -7 \)[/tex].

Therefore, the answer to the question is:

e) N.A.