Type the correct answer in each box. Use numerals instead of words.

Consider function [tex]h[/tex].

[tex]
h(x)=\left\{\begin{array}{ll}
3x-4, & x\ \textless \ 0 \\
2x^2-3x+10, & 0 \leq x\ \textless \ 4 \\
2^x, & x \geq 4
\end{array}\right.
[/tex]

What are the values of the function when [tex]x=0[/tex] and when [tex]x=4[/tex]?

[tex]
\begin{array}{l}
h(0)=\square \\
h(4)=\square
\end{array}
[/tex]



Answer :

Let's determine the values of the function [tex]\( h(x) \)[/tex] at [tex]\( x = 0 \)[/tex] and [tex]\( x = 4 \)[/tex] by analyzing the definition of [tex]\( h \)[/tex].

1. For [tex]\( x = 0 \)[/tex]:
According to the piecewise function definition, when [tex]\( 0 \leq x < 4 \)[/tex], the function is given by [tex]\( h(x) = 2x^2 - 3x + 10 \)[/tex].
Therefore, to find [tex]\( h(0) \)[/tex]:
[tex]\[ h(0) = 2(0)^2 - 3(0) + 10 = 10 \][/tex]

So, [tex]\( h(0) = 10 \)[/tex].

2. For [tex]\( x = 4 \)[/tex]:
According to the piecewise function, when [tex]\( x \geq 4 \)[/tex], the function is given by [tex]\( h(x) = 2^x \)[/tex].
Therefore, to find [tex]\( h(4) \)[/tex]:
[tex]\[ h(4) = 2^4 = 16 \][/tex]

So, [tex]\( h(4) = 16 \)[/tex].

Thus, the values of the function are:
[tex]\[ \begin{array}{l} h(0) = 10 \\ h(4) = 16 \end{array} \][/tex]