Select the correct answer.

What is the solution for [tex]x[/tex] in the equation?
[tex]-2x + 14 + 10x = 34[/tex]

A. [tex]z = \frac{2}{5}[/tex]
B. [tex]z = 6[/tex]
C. [tex]x = \frac{5}{2}[/tex]
D. [tex]z = \frac{1}{8}[/tex]



Answer :

To solve the equation [tex]\(-2x + 14 + 10x = 34\)[/tex] for [tex]\(x\)[/tex], follow these detailed steps:

1. Combine like terms:
[tex]\[ -2x + 10x + 14 = 34 \][/tex]
Combine the [tex]\(x\)[/tex] terms:
[tex]\[ (10x - 2x) + 14 = 34 \][/tex]
Simplify:
[tex]\[ 8x + 14 = 34 \][/tex]

2. Isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 8x + 14 = 34 \][/tex]
Subtract 14 from both sides to move the constant term to the right side of the equation:
[tex]\[ 8x = 34 - 14 \][/tex]
Simplify:
[tex]\[ 8x = 20 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by 8:
[tex]\[ x = \frac{20}{8} \][/tex]
Simplify the fraction:
[tex]\[ x = \frac{5}{2} \][/tex]

Therefore, the solution for [tex]\(x\)[/tex] in the equation [tex]\(-2x + 14 + 10x = 34\)[/tex] is [tex]\(\frac{5}{2}\)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{x = \frac{5}{2}} \][/tex]