Answer :

Certainly! Let's simplify the given expression step-by-step.

We start with the given expression:

[tex]\[ (5x - xy^2) - (4xy^2 - 2x) \][/tex]

First, we distribute the negative sign through the second expression:

[tex]\[ 5x - xy^2 - 4xy^2 + 2x \][/tex]

Next, we combine like terms. The terms involving [tex]\(x\)[/tex] are [tex]\(5x\)[/tex] and [tex]\(2x\)[/tex], and the terms involving [tex]\(xy^2\)[/tex] are [tex]\(-xy^2\)[/tex] and [tex]\(-4xy^2\)[/tex]:

[tex]\[ (5x + 2x) + (-xy^2 - 4xy^2) \][/tex]

Simplify the coefficients:

[tex]\[ 7x - 5xy^2 \][/tex]

Thus, the simplified form of the expression is:

[tex]\[ 7x - 5xy^2 \][/tex]

Alternatively, we can factor out the common term [tex]\(x\)[/tex]:

[tex]\[ x(7 - 5y^2) \][/tex]

Hence, the simplified result is equivalently written as:

[tex]\[ 7x - 5xy^2 \quad \text{or} \quad x(7 - 5y^2) \][/tex]