Select the correct answer.

Points B and C lie on a circle with center O and a radius of 15 units. If the length of arc BC is [tex]$21 \pi$[/tex] units, what is [tex]$m \angle BOC$[/tex] in radians?

A. [tex][tex]$1.2 \pi$[/tex][/tex]
B. [tex]$0.7 \pi$[/tex]
C. [tex]$\frac{7}{5} \pi$[/tex]
D. [tex][tex]$\frac{3}{5} \pi$[/tex][/tex]



Answer :

To determine the measure of the central angle [tex]\( \angle BOC \)[/tex] in radians, we can use the relationship between the arc length, the radius of the circle, and the central angle.

1. Given Data:
- Radius ([tex]\( r \)[/tex]) of the circle: 15 units
- Length of arc [tex]\( BC \)[/tex]: [tex]\( 21 \pi \)[/tex] units

2. Formula: The arc length ([tex]\( L \)[/tex]) of a sector of a circle is given by:
[tex]\[ L = r \cdot \theta \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle and [tex]\( \theta \)[/tex] is the central angle in radians.

3. Rearrange the formula to solve for the central angle [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \frac{L}{r} \][/tex]

4. Substitute the given values into the formula:
[tex]\[ \theta = \frac{21 \pi}{15} \][/tex]

5. Simplify the fraction:
[tex]\[ \theta = \frac{21 \pi}{15} = \frac{7 \pi}{5} \][/tex]

So, the measure of [tex]\( \angle BOC \)[/tex] in radians is [tex]\( \frac{7}{5} \pi \)[/tex].

Thus, the correct answer is:
C. [tex]\( \frac{7}{5} \pi \)[/tex]