DATE:
NAME:

Find the next three terms in each sequence. Identify the common difference. Write a recursive function and an explicit function for each sequence.
(The first number is [tex]\( n=1 \)[/tex], not [tex]\( n=0 \)[/tex].)

9.
a. [tex]\( 3, 7, 11, 15, 19 \)[/tex], [tex]\( \qquad \)[/tex], [tex]\( \qquad \)[/tex], [tex]\( \qquad \)[/tex] ...

b. Common Difference:

c. Recursive Function: [tex]\( \qquad \)[/tex]

d. Explicit Function:



Answer :

## DATE
## NAME
## Set

### Question:
Find the next three terms in each sequence. Identify the common difference. Write a recursive function and an explicit function for each sequence.
(The first number is [tex]\( n=1 \)[/tex], not [tex]\( n=0 \)[/tex].)

### 9.
#### a. [tex]\( 3, 7, 11, 15, 19 \)[/tex],
[tex]\[ \qquad \boxed{23}, \boxed{27}, \boxed{31}, \ldots \][/tex]

#### b. Common Difference:
The common difference ([tex]\( d \)[/tex]) is the difference between consecutive terms in the sequence. To find the common difference:
[tex]\[ d = 7 - 3 = 4 \][/tex]
So, the common difference is [tex]\( \boxed{4} \)[/tex].

#### c. Recursive Function:
The recursive function for this arithmetic sequence is given as:
[tex]\[ a(n) = a(n-1) + 4 \quad \text{with} \quad a(1) = 3 \][/tex]
Thus, the recursive function can be written as:
[tex]\[ \boxed{a(n) = a(n-1) + 4} \][/tex]

#### d. Explicit Function:
The explicit function for an arithmetic sequence is generally given by:
[tex]\[ a(n) = a(1) + (n-1)d \][/tex]
For this specific sequence,
[tex]\[ a(n) = 3 + (n-1) \times 4 \][/tex]
So, the explicit function can be written as:
[tex]\[ \boxed{a(n) = 3 + (n-1) \times 4} \][/tex]