Which of these expressions is equivalent to [tex]\log \left(12^8\right)[/tex]?

A. [tex]8 \cdot \log (12)[/tex]
B. [tex]\log (8) - \log (12)[/tex]
C. [tex]\log (8) \cdot \log (12)[/tex]
D. [tex]\log (8) + \log (12)[/tex]



Answer :

To find an expression equivalent to [tex]\(\log \left(12^8\right)\)[/tex], we can use one of the logarithmic properties known as the power rule. The power rule states that:

[tex]\[ \log_b (a^c) = c \cdot \log_b (a) \][/tex]

In this case, we have [tex]\(a = 12\)[/tex], [tex]\(c = 8\)[/tex], and we are assuming the base [tex]\(b\)[/tex] is 10 (common logarithm) unless specified otherwise. Applying the power rule, we get:

[tex]\[ \log (12^8) = 8 \cdot \log (12) \][/tex]

So, by using the power rule, we see that [tex]\(\log (12^8)\)[/tex] is equivalent to [tex]\(8 \cdot \log (12)\)[/tex].

Therefore, the correct answer is:
A. [tex]\(8 \cdot \log (12)\)[/tex]