Question 9 of 10

Which of these expressions is equivalent to [tex]\log \left(\frac{12}{5}\right)[/tex]?

A. [tex]\log (12) - \log (5)[/tex]
B. [tex]\log (12) + \log (5)[/tex]
C. [tex]\log (12) \cdot \log (5)[/tex]
D. [tex]12 \cdot \log (5)[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\(\log \left(\frac{12}{5}\right)\)[/tex], let's use properties of logarithms, particularly the property dealing with the logarithm of a quotient.

The logarithm of a quotient, [tex]\(\log \left(\frac{a}{b}\right)\)[/tex], can be expressed as the difference of the logarithms of the numerator and the denominator:

[tex]\[ \log \left(\frac{a}{b}\right) = \log (a) - \log (b) \][/tex]

Applying this property to the given expression [tex]\(\log \left(\frac{12}{5}\right)\)[/tex]:

[tex]\[ \log \left(\frac{12}{5}\right) = \log (12) - \log (5) \][/tex]

Therefore, the correct expression equivalent to [tex]\(\log \left(\frac{12}{5}\right)\)[/tex] is:

[tex]\[ \log (12) - \log (5) \][/tex]

Thus, the correct answer is:

A. [tex]\(\log (12) - \log (5)\)[/tex]