Answer :

To solve the equation [tex]\(2^{5x} \times 2^x = \sqrt[5]{32}\)[/tex], follow these steps:

1. Simplify the right side of the equation:
[tex]\[ \sqrt[5]{32} \][/tex]
Recognize that 32 is a power of 2:
[tex]\[ 32 = 2^5 \][/tex]
Then:
[tex]\[ \sqrt[5]{32} = \sqrt[5]{2^5} \][/tex]
Using the property of exponents, [tex]\(\sqrt[n]{a^m} = a^{m/n}\)[/tex], this becomes:
[tex]\[ \sqrt[5]{2^5} = 2^{5/5} = 2^1 = 2 \][/tex]

2. Simplify the left side of the equation:
[tex]\[ 2^{5x} \times 2^x \][/tex]
Using the property of exponents where [tex]\(a^m \times a^n = a^{m+n}\)[/tex], combine the exponents:
[tex]\[ 2^{5x} \times 2^x = 2^{5x + x} = 2^{6x} \][/tex]

3. Set the simplified forms equal:
[tex]\[ 2^{6x} = 2 \][/tex]
Recognize that [tex]\(2\)[/tex] can be written as [tex]\(2^1\)[/tex]:
[tex]\[ 2^{6x} = 2^1 \][/tex]

4. Since the bases are the same, set the exponents equal to each other:
[tex]\[ 6x = 1 \][/tex]

5. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{1}{6} \][/tex]

Therefore, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{1}{6} \][/tex]