Find the absolute value of the complex number [tex]\(5 - 4i\)[/tex].

A. [tex]\(-6.4\)[/tex]
B. [tex]\(6\)[/tex]
C. [tex]\(6.04\)[/tex]
D. [tex]\(6.4\)[/tex]

Please select the best answer from the choices provided.



Answer :

To determine the absolute value of the complex number [tex]\( 5 - 4i \)[/tex], we use the formula for the modulus (absolute value) of a complex number [tex]\( a + bi \)[/tex], which is given by:

[tex]\[ \left| a + bi \right| = \sqrt{a^2 + b^2} \][/tex]

For the complex number [tex]\( 5 - 4i \)[/tex]:
- [tex]\( a = 5 \)[/tex]
- [tex]\( b = -4 \)[/tex]

Now, substitute these values into the formula:

[tex]\[ \left| 5 - 4i \right| = \sqrt{5^2 + (-4)^2} \][/tex]
[tex]\[ \left| 5 - 4i \right| = \sqrt{25 + 16} \][/tex]
[tex]\[ \left| 5 - 4i \right| = \sqrt{41} \][/tex]

Upon calculating the square root of 41, we obtain approximately:

[tex]\[ \sqrt{41} \approx 6.4031242374328485 \][/tex]

Given the options:
a. -6.4
b. 6
c. 6.04
d. 6.4

The closest and most appropriate answer is:
d. 6.4