Complete the table.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$f(x)=3x^2-5$ \\
\hline
$x$ & $f(x)$ \\
\hline
-2 & \\
\hline
-1 & \\
\hline
0 & \\
\hline
1 & \\
\hline
\end{tabular}
\][/tex]



Answer :

Absolutely, let's complete the table step-by-step by evaluating the function [tex]\( f(x) = 3x^2 - 5 \)[/tex] for each given [tex]\( x \)[/tex] value.

1. For [tex]\( x = -2 \)[/tex]:
- Substitute [tex]\( x = -2 \)[/tex] into the function:
[tex]\[ f(-2) = 3(-2)^2 - 5 \][/tex]
- Calculate the square of [tex]\(-2\)[/tex]:
[tex]\[ (-2)^2 = 4 \][/tex]
- Multiply by 3:
[tex]\[ 3 \cdot 4 = 12 \][/tex]
- Subtract 5:
[tex]\[ 12 - 5 = 7 \][/tex]
- So, [tex]\( f(-2) = 7 \)[/tex].

2. For [tex]\( x = -1 \)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] into the function:
[tex]\[ f(-1) = 3(-1)^2 - 5 \][/tex]
- Calculate the square of [tex]\(-1\)[/tex]:
[tex]\[ (-1)^2 = 1 \][/tex]
- Multiply by 3:
[tex]\[ 3 \cdot 1 = 3 \][/tex]
- Subtract 5:
[tex]\[ 3 - 5 = -2 \][/tex]
- So, [tex]\( f(-1) = -2 \)[/tex].

3. For [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 3 \cdot 0^2 - 5 \][/tex]
- Calculate the square of 0:
[tex]\[ 0^2 = 0 \][/tex]
- Multiply by 3:
[tex]\[ 3 \cdot 0 = 0 \][/tex]
- Subtract 5:
[tex]\[ 0 - 5 = -5 \][/tex]
- So, [tex]\( f(0) = -5 \)[/tex].

4. For [tex]\( x = 1 \)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]\[ f(1) = 3 \cdot 1^2 - 5 \][/tex]
- Calculate the square of 1:
[tex]\[ 1^2 = 1 \][/tex]
- Multiply by 3:
[tex]\[ 3 \cdot 1 = 3 \][/tex]
- Subtract 5:
[tex]\[ 3 - 5 = -2 \][/tex]
- So, [tex]\( f(1) = -2 \)[/tex].

Now, we can complete the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -2 & 7 \\ \hline -1 & -2 \\ \hline 0 & -5 \\ \hline 1 & -2 \\ \hline \end{tabular} \][/tex]