Complete the table.

\begin{tabular}{|c|c|}
\hline
[tex]$f(x)=x^2+2x$[/tex] \\
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-4 & \\
\hline
-2 & \\
\hline
0 & \\
\hline
2 & \\
\hline
\end{tabular}



Answer :

Let's complete the table by evaluating the function [tex]\( f(x) = x^2 + 2x \)[/tex] for each given [tex]\( x \)[/tex] value.

### Step-by-Step Solution:

1. For [tex]\( x = -4 \)[/tex]:
- Substitute [tex]\( x = -4 \)[/tex] into the function [tex]\( f(x) = x^2 + 2x \)[/tex]:
[tex]\[ f(-4) = (-4)^2 + 2(-4) = 16 - 8 = 8 \][/tex]

2. For [tex]\( x = -2 \)[/tex]:
- Substitute [tex]\( x = -2 \)[/tex] into the function [tex]\( f(x) = x^2 + 2x \)[/tex]:
[tex]\[ f(-2) = (-2)^2 + 2(-2) = 4 - 4 = 0 \][/tex]

3. For [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the function [tex]\( f(x) = x^2 + 2x \)[/tex]:
[tex]\[ f(0) = 0^2 + 2(0) = 0 \][/tex]

4. For [tex]\( x = 2 \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] into the function [tex]\( f(x) = x^2 + 2x \)[/tex]:
[tex]\[ f(2) = 2^2 + 2(2) = 4 + 4 = 8 \][/tex]

### Completed Table:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -4 & 8 \\ \hline -2 & 0 \\ \hline 0 & 0 \\ \hline 2 & 8 \\ \hline \end{tabular} \][/tex]

So, the function values [tex]\( f(x) \)[/tex] for the given [tex]\( x \)[/tex] values are:
- [tex]\( f(-4) = 8 \)[/tex]
- [tex]\( f(-2) = 0 \)[/tex]
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( f(2) = 8 \)[/tex]