Answer :
Sure, let's work through the problem step-by-step.
1. Calculate the total purchase price:
- Mohan purchased 4 dozen copies at the rate of Rs18 per dozen.
- Calculation:
[tex]\[ \text{Total Purchase Price} = 4 \text{ dozen} \times Rs 18 \text{ per dozen} = Rs 72 \][/tex]
2. Calculate the total selling price:
- He sold 3 dozen copies at the rate of Rs16 per dozen.
[tex]\[ \text{Selling Price for 3 Dozen} = 3 \text{ dozen} \times Rs 16 \text{ per dozen} = Rs 48 \][/tex]
- He sold the remaining 1 dozen copies at the rate of Rs16.50 per dozen.
[tex]\[ \text{Selling Price for 1 Dozen} = 1 \text{ dozen} \times Rs 16.50 \text{ per dozen} = Rs 16.50 \][/tex]
- Therefore, the total selling price is:
[tex]\[ \text{Total Selling Price} = Rs 48 + Rs 16.50 = Rs 64.50 \][/tex]
3. Calculate the loss:
- The loss is the difference between the total purchase price and the total selling price.
[tex]\[ \text{Loss} = \text{Total Purchase Price} - \text{Total Selling Price} = Rs 72 - Rs 64.50 = Rs 7.50 \][/tex]
4. Calculate the loss percent:
- The loss percent is given by:
[tex]\[ \text{Loss Percent} = \left( \frac{\text{Loss}}{\text{Total Purchase Price}} \right) \times 100 = \left( \frac{7.5}{72} \right) \times 100 \][/tex]
- Simplify the calculation:
[tex]\[ \text{Loss Percent} = 10.416666666666668 \% \][/tex]
Since the options provided are in mixed fractions, let's identify the correct option.
- 10.416666666666668 % is equivalent to:
[tex]\[ 10 \frac{5}{12} \% \][/tex]
Hence, the correct option is:
(a) [tex]$10 \frac{5}{12} \%$[/tex]
1. Calculate the total purchase price:
- Mohan purchased 4 dozen copies at the rate of Rs18 per dozen.
- Calculation:
[tex]\[ \text{Total Purchase Price} = 4 \text{ dozen} \times Rs 18 \text{ per dozen} = Rs 72 \][/tex]
2. Calculate the total selling price:
- He sold 3 dozen copies at the rate of Rs16 per dozen.
[tex]\[ \text{Selling Price for 3 Dozen} = 3 \text{ dozen} \times Rs 16 \text{ per dozen} = Rs 48 \][/tex]
- He sold the remaining 1 dozen copies at the rate of Rs16.50 per dozen.
[tex]\[ \text{Selling Price for 1 Dozen} = 1 \text{ dozen} \times Rs 16.50 \text{ per dozen} = Rs 16.50 \][/tex]
- Therefore, the total selling price is:
[tex]\[ \text{Total Selling Price} = Rs 48 + Rs 16.50 = Rs 64.50 \][/tex]
3. Calculate the loss:
- The loss is the difference between the total purchase price and the total selling price.
[tex]\[ \text{Loss} = \text{Total Purchase Price} - \text{Total Selling Price} = Rs 72 - Rs 64.50 = Rs 7.50 \][/tex]
4. Calculate the loss percent:
- The loss percent is given by:
[tex]\[ \text{Loss Percent} = \left( \frac{\text{Loss}}{\text{Total Purchase Price}} \right) \times 100 = \left( \frac{7.5}{72} \right) \times 100 \][/tex]
- Simplify the calculation:
[tex]\[ \text{Loss Percent} = 10.416666666666668 \% \][/tex]
Since the options provided are in mixed fractions, let's identify the correct option.
- 10.416666666666668 % is equivalent to:
[tex]\[ 10 \frac{5}{12} \% \][/tex]
Hence, the correct option is:
(a) [tex]$10 \frac{5}{12} \%$[/tex]