Answer :

Let's find the value of the expression [tex]\( z^3 - 5xy + 3xyz \)[/tex] given that [tex]\( x = 1 \)[/tex], [tex]\( y = -1 \)[/tex], and [tex]\( z = -2 \)[/tex].

Step-by-Step Solution:

1. Substitute the values into the expression:

Given:
[tex]\[ x = 1, \quad y = -1, \quad z = -2 \][/tex]

The expression to evaluate is:
[tex]\[ z^3 - 5xy + 3xyz \][/tex]

2. Calculate each term separately:

First term: [tex]\( z^3 \)[/tex]
[tex]\[ z^3 = (-2)^3 = -8 \][/tex]

Second term: [tex]\( -5xy \)[/tex]
[tex]\[ -5xy = -5 \times 1 \times (-1) = 5 \][/tex]

Third term: [tex]\( 3xyz \)[/tex]
[tex]\[ 3xyz = 3 \times 1 \times (-1) \times (-2) = 6 \][/tex]

3. Sum the terms:

Now, we add the calculated terms together:
[tex]\[ z^3 + (-5xy) + 3xyz = -8 + 5 + 6 \][/tex]

4. Compute the total:
[tex]\[ -8 + 5 = -3 \][/tex]
[tex]\[ -3 + 6 = 3 \][/tex]

Therefore, the value of the expression [tex]\( z^3 - 5xy + 3xyz \)[/tex] when [tex]\( x = 1 \)[/tex], [tex]\( y = -1 \)[/tex], and [tex]\( z = -2 \)[/tex] is [tex]\( 3 \)[/tex].

Summary of individual terms:
[tex]\[ z^3 = -8 \][/tex]
[tex]\[ -5xy = 5 \][/tex]
[tex]\[ 3xyz = 6 \][/tex]

Final Result:
[tex]\[ z^3 - 5xy + 3xyz = 3 \][/tex]