Let's solve the expression step by step to simplify it:
Given expression is:
[tex]\[ -7(n + 4) + 7n \][/tex]
### Step 1: Distribute -7 through the parenthesis
We start by distributing [tex]\(-7\)[/tex] to both terms inside the parenthesis:
[tex]\[ -7 \cdot n + (-7) \cdot 4 + 7n \][/tex]
This simplifies to:
[tex]\[ -7n - 28 + 7n \][/tex]
### Step 2: Combine like terms
Next, we need to combine the like terms [tex]\(-7n\)[/tex] and [tex]\(7n\)[/tex]:
[tex]\[ -7n + 7n - 28 \][/tex]
### Step 3: Perform the addition of the like terms
[tex]\[ -7n + 7n = 0 \][/tex]
So the expression simplifies to:
[tex]\[ 0 - 28 \][/tex]
Or simply:
[tex]\[ -28 \][/tex]
Therefore, the simplified form of the given expression [tex]\(-7(n+4) + 7n\)[/tex] is:
[tex]\[ \boxed{-28} \][/tex]