The drama club is selling candy for a school fundraiser. Each club member starts with 150 pieces of candy to sell. The linear function [tex]c(x)=-10x+150[/tex] models the number of pieces of candy remaining after a given number of days, [tex]x[/tex]. What is the range of the function?

A. [150, -1]
B. [tex](-\infty, 150)[/tex]
C. [tex][0, 150][/tex]
D. [tex](-\infty, -\infty)[/tex]



Answer :

To determine the range of the linear function [tex]\( c(x) = -10x + 150 \)[/tex], which models the number of pieces of candy remaining after a given number of days [tex]\( x \)[/tex], let's analyze the function step-by-step.

### Step 1: Understanding the Variables
- [tex]\( c(x) \)[/tex]: The number of pieces of candy remaining after [tex]\( x \)[/tex] days.
- [tex]\( x \)[/tex]: The number of days passed.

### Step 2: Identifying the Constraints
1. The minimum number of days ([tex]\( x \)[/tex]) is 0 because selling candy does not begin before day 0. Therefore, [tex]\( x \geq 0 \)[/tex].
2. We know each member starts with 150 pieces of candy. So, initially (at [tex]\( x = 0 \)[/tex]):
[tex]\[ c(0) = -10(0) + 150 = 150 \][/tex]

### Step 3: Finding the Specific Points
1. To find the number of days when all the candy is sold, set [tex]\( c(x) = 0 \)[/tex]:
[tex]\[ 0 = -10x + 150 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 10x = 150 \implies x = \frac{150}{10} \implies x = 15 \][/tex]

Therefore, when [tex]\( x = 15 \)[/tex]:
[tex]\[ c(15) = -10(15) + 150 = 0 \][/tex]

### Step 4: Determine the Range
- From [tex]\( x = 0 \)[/tex] to [tex]\( x = 15 \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( c(x) = 150 \)[/tex].
- At [tex]\( x = 15 \)[/tex], [tex]\( c(x) = 0 \)[/tex].

Thus, as [tex]\( x \)[/tex] goes from [tex]\( 0 \)[/tex] to [tex]\( 15 \)[/tex], [tex]\( c(x) \)[/tex] decreases linearly from [tex]\( 150 \)[/tex] to [tex]\( 0 \)[/tex].

Therefore, the range of the function [tex]\( c(x) = -10x + 150 \)[/tex] is:
[tex]\[ [0, 150] \][/tex]

So, the correct range of the function is:
[tex]\[ \boxed{[0, 150]} \][/tex]