Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\sqrt{150}[/tex]

A. [tex]25 \sqrt{6}[/tex]

B. [tex]15 \sqrt{10}[/tex]

C. [tex]25 \sqrt{3}[/tex]

D. [tex]5 \sqrt{6}[/tex]



Answer :

To find the expression equivalent to [tex]\(\sqrt{150}\)[/tex], we need to simplify it by breaking it down into its prime factors and using the properties of square roots.

1. Begin with the given expression:
[tex]\[\sqrt{150}\][/tex]

2. Factorize the number 150:
[tex]\[150 = 25 \times 6\][/tex]

3. Use the property of square roots that allows us to separate the factors:
[tex]\[\sqrt{150} = \sqrt{25 \times 6} = \sqrt{25} \times \sqrt{6}\][/tex]

4. Simplify the square root of 25:
[tex]\[\sqrt{25} = 5\][/tex]

5. Multiply the simplified terms together:
[tex]\[\sqrt{150} = 5 \times \sqrt{6}\][/tex]

Therefore, the expression [tex]\(\sqrt{150}\)[/tex] simplifies to [tex]\(5 \sqrt{6}\)[/tex].

The correct answer is:
[tex]\[5 \sqrt{6}\][/tex]

So, the correct choice is:
[tex]\[4\][/tex]