Answer :

To find the highest common factor (HCF) of the given expressions [tex]\(\left(1-x^2\right)\left(1-y^2\right)+4xy\)[/tex] and [tex]\(1-2x+y-x^2 y + x^2\)[/tex], we need to follow these steps:

1. Expand the expressions:

First, let's expand [tex]\(\left(1 - x^2\right)\left(1 - y^2\right) + 4xy\)[/tex].

[tex]\[ (1 - x^2)(1 - y^2) + 4xy = (1 - x^2)(1 - y^2) + 4xy \][/tex]

Expand [tex]\((1 - x^2)(1 - y^2)\)[/tex]:

[tex]\[ (1 - x^2)(1 - y^2) = 1 - y^2 - x^2 + x^2 y^2 \][/tex]

Now add [tex]\(4xy\)[/tex]:

[tex]\[ 1 - y^2 - x^2 + x^2 y^2 + 4xy \][/tex]

So the expanded form of the first expression is:

[tex]\[ 1 - y^2 - x^2 + x^2 y^2 + 4xy \][/tex]

2. Re-write the second expression:

The second expression is already in a simplified form:

[tex]\[ 1 - 2x + y - x^2 y + x^2 \][/tex]

3. Find the Highest Common Factor (HCF):

To find the HCF of the expanded form of the first expression and the second expression:

The first expression can be written as:

[tex]\[ x^2 y^2 - x^2 - y^2 + 4xy + 1 \][/tex]

And the second expression is:

[tex]\[ 1 - 2x + y - x^2 y + x^2 \][/tex]

After evaluating and simplifying the highest common factor of these two polynomials involving variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex], we derive:

[tex]\[ \boxed{x y - x + y + 1} \][/tex]

Thus, the highest common factor of [tex]\(\left(1-x^2\right)\left(1-y^2\right)+4xy\)[/tex] and [tex]\(1-2x+y-x^2 y + x^2\)[/tex] is [tex]\(\boxed{xy - x + y + 1}\)[/tex].