Answer :
To write the number [tex]\( 4.702 \times 10^{-4} \)[/tex] in standard notation, follow these steps:
1. Identify the exponent in the scientific notation. In this case, the exponent is [tex]\(-4\)[/tex], which means the decimal point will move four places to the left.
2. Start with the number [tex]\( 4.702 \)[/tex].
3. Move the decimal place four positions to the left. For each position it moves, if there are not enough digits to the left of the current decimal point, we add zeros as placeholders.
- Initially, the number is [tex]\( 4.702 \)[/tex].
- Move the decimal point one place to the left: [tex]\( 0.4702 \)[/tex] (we add a zero before the 4).
- Move the decimal point another place to the left: [tex]\( 0.04702 \)[/tex].
- Move the decimal point a third place to the left: [tex]\( 0.004702 \)[/tex].
- Move the decimal point the fourth and final place to the left: [tex]\( 0.0004702 \)[/tex].
Thus, [tex]\( 4.702 \times 10^{-4} \)[/tex] in standard notation is [tex]\( 0.0004702 \)[/tex].
1. Identify the exponent in the scientific notation. In this case, the exponent is [tex]\(-4\)[/tex], which means the decimal point will move four places to the left.
2. Start with the number [tex]\( 4.702 \)[/tex].
3. Move the decimal place four positions to the left. For each position it moves, if there are not enough digits to the left of the current decimal point, we add zeros as placeholders.
- Initially, the number is [tex]\( 4.702 \)[/tex].
- Move the decimal point one place to the left: [tex]\( 0.4702 \)[/tex] (we add a zero before the 4).
- Move the decimal point another place to the left: [tex]\( 0.04702 \)[/tex].
- Move the decimal point a third place to the left: [tex]\( 0.004702 \)[/tex].
- Move the decimal point the fourth and final place to the left: [tex]\( 0.0004702 \)[/tex].
Thus, [tex]\( 4.702 \times 10^{-4} \)[/tex] in standard notation is [tex]\( 0.0004702 \)[/tex].