What is the range of the data?

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Trial \\
number
\end{tabular} & \begin{tabular}{c}
Density \\
[tex]$\left( g / cm ^{ 3 }\right)$[/tex]
\end{tabular} \\
\hline
1 & 8.9 \\
\hline
2 & 8.6 \\
\hline
3 & 8.7 \\
\hline
Average & 8.7 \\
\hline
\end{tabular}

A. [tex]$0.3 g / cm ^3$[/tex]
B. [tex]$12.5 g / cm ^3$[/tex]
C. [tex]$4.3 g / cm ^3$[/tex]
D. [tex]$64.8 g / cm ^3$[/tex]



Answer :

To find the range of the given data, we need to follow these steps:

1. Identify the Densities:
The densities for each trial are given as:
- Trial 1: [tex]\( 8.9 \, g/cm^3 \)[/tex]
- Trial 2: [tex]\( 8.6 \, g/cm^3 \)[/tex]
- Trial 3: [tex]\( 8.7 \, g/cm^3 \)[/tex]

2. Determine the Maximum and Minimum Values:
- Maximum density: [tex]\( 8.9 \, g/cm^3 \)[/tex]
- Minimum density: [tex]\( 8.6 \, g/cm^3 \)[/tex]

3. Calculate the Range:
The range is the difference between the maximum and minimum values.
[tex]\[ \text{Range} = \text{Maximum density} - \text{Minimum density} \][/tex]
[tex]\[ \text{Range} = 8.9 \, g/cm^3 - 8.6 \, g/cm^3 \][/tex]
[tex]\[ \text{Range} = 0.3 \, g/cm^3 \][/tex]

So, the range of the data is [tex]\( 0.3 \, g/cm^3 \)[/tex].

Therefore, the correct answer is:
A. [tex]\( 0.3 \, g/cm^3 \)[/tex]