Answer :
Sure! To solve the problem of adding 7 to 9 times a given value [tex]\( r \)[/tex], follow these steps:
1. Calculate 9 times [tex]\( r \)[/tex]:
- This means you multiply the value of [tex]\( r \)[/tex] by 9.
- Mathematically, this is represented as [tex]\( 9r \)[/tex].
2. Add 7 to the result from step 1:
- After calculating [tex]\( 9r \)[/tex], add 7 to this product.
- Mathematically, the expression becomes [tex]\( 9r + 7 \)[/tex].
So, the step-by-step process is:
1. [tex]\( 9r \)[/tex] (This is 9 multiplied by [tex]\( r \)[/tex])
2. [tex]\( 9r + 7 \)[/tex] (Adding 7 to the result)
### Example:
If [tex]\( r = 2 \)[/tex],
1. Calculate [tex]\( 9 \times 2 = 18 \)[/tex]
2. Add 7 to the result: [tex]\( 18 + 7 = 25 \)[/tex]
Therefore, when [tex]\( r = 2 \)[/tex], the final result is 25.
### General Form:
For any given value of [tex]\( r \)[/tex],
- Multiply [tex]\( r \)[/tex] by 9 to get [tex]\( 9r \)[/tex].
- Add 7 to [tex]\( 9r \)[/tex] to get the final result: [tex]\( 9r + 7 \)[/tex].
This expression [tex]\( 9r + 7 \)[/tex] gives the required solution for any value of [tex]\( r \)[/tex].
1. Calculate 9 times [tex]\( r \)[/tex]:
- This means you multiply the value of [tex]\( r \)[/tex] by 9.
- Mathematically, this is represented as [tex]\( 9r \)[/tex].
2. Add 7 to the result from step 1:
- After calculating [tex]\( 9r \)[/tex], add 7 to this product.
- Mathematically, the expression becomes [tex]\( 9r + 7 \)[/tex].
So, the step-by-step process is:
1. [tex]\( 9r \)[/tex] (This is 9 multiplied by [tex]\( r \)[/tex])
2. [tex]\( 9r + 7 \)[/tex] (Adding 7 to the result)
### Example:
If [tex]\( r = 2 \)[/tex],
1. Calculate [tex]\( 9 \times 2 = 18 \)[/tex]
2. Add 7 to the result: [tex]\( 18 + 7 = 25 \)[/tex]
Therefore, when [tex]\( r = 2 \)[/tex], the final result is 25.
### General Form:
For any given value of [tex]\( r \)[/tex],
- Multiply [tex]\( r \)[/tex] by 9 to get [tex]\( 9r \)[/tex].
- Add 7 to [tex]\( 9r \)[/tex] to get the final result: [tex]\( 9r + 7 \)[/tex].
This expression [tex]\( 9r + 7 \)[/tex] gives the required solution for any value of [tex]\( r \)[/tex].