Solve the equations:
[tex]\[2x + y = 4\][/tex]
and
[tex]\[x + y = 2\][/tex]
simultaneously.

Use the table below to answer questions 6 and 7 for the relation [tex]\[y = 2x + 5\][/tex]

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
$x$ & 4 & 3 & 2 & 2 & 0 & 1 & 2 & 3 & 4 \\
\hline
$y$ & 3 & $A$ & 1 & 8 & 5 & $C$ & 9 & 0 & 13 \\
\hline
\end{tabular}
\][/tex]



Answer :

To solve the system of equations [tex]\(2x + y = 4\)[/tex] and [tex]\(x + y = 2\)[/tex] simultaneously, follow these steps:

1. Start with the two given equations:
[tex]\[ 2x + y = 4 \quad \text{(Equation 1)} \][/tex]
[tex]\[ x + y = 2 \quad \text{(Equation 2)} \][/tex]

2. Solve for [tex]\(y\)[/tex] from Equation 2:
[tex]\[ y = 2 - x \][/tex]

3. Substitute [tex]\(y = 2 - x\)[/tex] into Equation 1 to eliminate [tex]\(y\)[/tex]:
[tex]\[ 2x + (2 - x) = 4 \][/tex]
Simplify the equation:
[tex]\[ 2x + 2 - x = 4 \][/tex]
[tex]\[ x + 2 = 4 \][/tex]
[tex]\[ x = 4 - 2 \][/tex]
[tex]\[ x = 2 \][/tex]

4. Substitute [tex]\(x = 2\)[/tex] back into Equation 2 to find [tex]\(y\)[/tex]:
[tex]\[ x + y = 2 \][/tex]
[tex]\[ 2 + y = 2 \][/tex]
[tex]\[ y = 2 - 2 \][/tex]
[tex]\[ y = 0 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ x = 2, \quad y = 0 \][/tex]

For the table, the relation provided is [tex]\(y = 2x + 5\)[/tex]:

To answer question 6:
Use [tex]\(x = 3\)[/tex]:

[tex]\[ y = 2 \cdot 3 + 5 = 6 + 5 = 11 \][/tex]

So, [tex]\( A = 11 \)[/tex].

To answer question 7:
Use [tex]\(x = 1\)[/tex]:

[tex]\[ y = 2 \cdot 1 + 5 = 2 + 5 = 7 \][/tex]

So, [tex]\( c = 7 \)[/tex].

Update the table:

[tex]\[ \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|} \hline $x$ & 4 & 3 & 2 & 2 & 0 & 1 & 2 & 3 & 4 \\ \hline $\times$ & 3 & 11 & 1 & 8 & 5 & 7 & 9 & 0 & 13 \\ \hline \end{tabular} \][/tex]