Using the equation for the line of best fit, [tex]f(x) = -0.86x + 13.5[/tex], for the set of points in the table:

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
2 & 12 \\
\hline
3 & 10 \\
\hline
5 & 10 \\
\hline
6 & 8 \\
\hline
7 & 9 \\
\hline
8 & 5 \\
\hline
9 & 6 \\
\hline
\end{tabular}

What is a good approximation for the value of the function, [tex]f(x)[/tex], when [tex]x = 18[/tex]?

A. -5

B. -2

C. 3

D. 12



Answer :

To find the value of the function [tex]\(f(x)\)[/tex] when [tex]\(x = 18\)[/tex] using the equation of the line of best fit given by [tex]\(f(x) = -0.86x + 13.5\)[/tex], follow these steps:

1. Start with the given equation: [tex]\(f(x) = -0.86x + 13.5\)[/tex].
2. Substitute [tex]\(x = 18\)[/tex] into the equation.

[tex]\[ f(18) = -0.86 \cdot 18 + 13.5 \][/tex]

3. Calculate the product [tex]\(-0.86 \cdot 18\)[/tex].

4. After obtaining that product, add the constant term [tex]\(13.5\)[/tex].

Combining these steps, you get:

[tex]\[ f(18) = -0.86 \cdot 18 + 13.5 = -1.98 \][/tex]

Therefore, the good approximation for the value of the function when [tex]\(x = 18\)[/tex] is [tex]\(-2\)[/tex].

The choice closest to [tex]\(-1.98\)[/tex] is [tex]\(-2\)[/tex]. Hence, the correct approximation is:
[tex]\[ \boxed{-2} \][/tex]