Using rational approximations, what is an inequality statement comparing [tex]\pi[/tex] and [tex]\sqrt{8}[/tex]?

Enter [tex]\ \textless \ [/tex], [tex]\ \textgreater \ [/tex], or [tex]=[/tex].

The inequality is: [tex]\pi \ \square \ \sqrt{8}[/tex]



Answer :

To compare [tex]\(\pi\)[/tex] and [tex]\(\sqrt{8}\)[/tex], let's first understand their approximate numerical values.

1. Approximation of [tex]\(\pi\)[/tex]:
[tex]\(\pi \approx 3.14159\)[/tex]

2. Approximation of [tex]\(\sqrt{8}\)[/tex]:
To find [tex]\(\sqrt{8}\)[/tex], we can rewrite it as:
[tex]\[ \sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2\sqrt{2} \][/tex]
We know that [tex]\(\sqrt{2} \approx 1.414\)[/tex]:
[tex]\[ 2\sqrt{2} \approx 2 \times 1.414 = 2.828 \][/tex]

Now that we have the approximations:
- [tex]\(\pi \approx 3.14159\)[/tex]
- [tex]\(\sqrt{8} \approx 2.828\)[/tex]

By comparing these two values:
- [tex]\(3.14159\)[/tex] (value of [tex]\(\pi\)[/tex])
- [tex]\(2.828\)[/tex] (value of [tex]\(\sqrt{8}\)[/tex])

We see that:
[tex]\[ \pi > \sqrt{8} \][/tex]

Therefore, the inequality statement comparing [tex]\(\pi\)[/tex] and [tex]\(\sqrt{8}\)[/tex] is:
[tex]\[ \pi > \sqrt{8} \][/tex]