Answer :
Certainly! Let's set up the math expressions to solve the given problem step-by-step.
1. Convert the speed from km/h to m/s:
We know that:
- 1 kilometer (km) = 1000 meters (m)
- 1 hour (h) = 3600 seconds (s)
Consequently:
[tex]\[ \text{Speed in m/s} = 809 \ \text{km/h} \times \frac{1000 \ \text{m}}{1 \ \text{km}} \times \frac{1 \ \text{h}}{3600 \ \text{s}} \][/tex]
2. Express the distance to be covered:
The distance is given directly as:
[tex]\[ \text{Distance} = 249 \ \text{m} \][/tex]
3. Calculate the time required to cover the distance:
Time is given by:
[tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Speed in m/s}} \][/tex]
Bringing it all together:
Time [tex]\( t \)[/tex] required to cover 249 meters at 809 km/h in seconds is:
[tex]\[ t \ (\text{seconds}) = \frac{249 \ \text{m}}{809 \ \text{km/h} \times \frac{1000 \ \text{m}}{1 \ \text{km}} \times \frac{1 \ \text{h}}{3600 \ \text{s}}} \][/tex]
1. Convert the speed from km/h to m/s:
We know that:
- 1 kilometer (km) = 1000 meters (m)
- 1 hour (h) = 3600 seconds (s)
Consequently:
[tex]\[ \text{Speed in m/s} = 809 \ \text{km/h} \times \frac{1000 \ \text{m}}{1 \ \text{km}} \times \frac{1 \ \text{h}}{3600 \ \text{s}} \][/tex]
2. Express the distance to be covered:
The distance is given directly as:
[tex]\[ \text{Distance} = 249 \ \text{m} \][/tex]
3. Calculate the time required to cover the distance:
Time is given by:
[tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Speed in m/s}} \][/tex]
Bringing it all together:
Time [tex]\( t \)[/tex] required to cover 249 meters at 809 km/h in seconds is:
[tex]\[ t \ (\text{seconds}) = \frac{249 \ \text{m}}{809 \ \text{km/h} \times \frac{1000 \ \text{m}}{1 \ \text{km}} \times \frac{1 \ \text{h}}{3600 \ \text{s}}} \][/tex]