Determine the intercepts of the line. Do not round your answers.

[tex]\[
\begin{array}{l}
y = 8x - 18 \\
y\text{-intercept: }(0, \square) \\
x\text{-intercept: }(\square, 0)
\end{array}
\][/tex]



Answer :

To determine the intercepts of the line given by the equation [tex]\( y = 8x - 18 \)[/tex], let's find the [tex]\( y \)[/tex]-intercept and the [tex]\( x \)[/tex]-intercept separately.

### Finding the [tex]\( y \)[/tex]-Intercept

The [tex]\( y \)[/tex]-intercept occurs where the line crosses the [tex]\( y \)[/tex]-axis. This happens when [tex]\( x = 0 \)[/tex].

1. Substitute [tex]\( x = 0 \)[/tex] into the equation:
[tex]\[ y = 8(0) - 18 \][/tex]
2. Simplify the equation:
[tex]\[ y = -18 \][/tex]

Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( (0, -18) \)[/tex].

### Finding the [tex]\( x \)[/tex]-Intercept

The [tex]\( x \)[/tex]-intercept occurs where the line crosses the [tex]\( x \)[/tex]-axis. This happens when [tex]\( y = 0 \)[/tex].

1. Substitute [tex]\( y = 0 \)[/tex] into the equation:
[tex]\[ 0 = 8x - 18 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
[tex]\[ 8x - 18 = 0 \][/tex]
[tex]\[ 8x = 18 \][/tex]
[tex]\[ x = \frac{18}{8} \][/tex]
[tex]\[ x = \frac{9}{4} \][/tex]
[tex]\[ x = 2.25 \][/tex]

Therefore, the [tex]\( x \)[/tex]-intercept is [tex]\( \left(2.25, 0\right) \)[/tex].

### Summary

The intercepts of the line [tex]\( y = 8x - 18 \)[/tex] are:
- [tex]\( y \)[/tex]-intercept: [tex]\( (0, -18) \)[/tex]
- [tex]\( x \)[/tex]-intercept: [tex]\( \left(2.25, 0\right) \)[/tex]