To find the radical expression for [tex]\( 2d^{\frac{7}{10}} \)[/tex], we need to express it in terms of radicals.
Here are the steps:
1. Start with the given expression:
[tex]\[
2d^{\frac{7}{10}}
\][/tex]
2. We can rewrite the exponent [tex]\( \frac{7}{10} \)[/tex]
3. The expression [tex]\( d^{\frac{7}{10}} \)[/tex] can be rewritten in terms of radical notation. The fraction [tex]\( \frac{7}{10} \)[/tex] indicates a 10th root (denominator) and raising to the power 7 (numerator):
[tex]\[
d^{\frac{7}{10}} = \sqrt[10]{d^7}
\][/tex]
4. Therefore, the original expression can be rewritten as:
[tex]\[
2d^{\frac{7}{10}} = 2 \sqrt[10]{d^7}
\][/tex]
Thus, the radical expression for [tex]\( 2d^{\frac{7}{10}} \)[/tex] is:
[tex]\[
2 \sqrt[10]{d^7}
\][/tex]
The correct option is:
[tex]\[
\boxed{2 \sqrt[10]{d^7}}
\][/tex]