Which of the following is the radical expression of [tex]$2 d^{\frac{7}{10}}$[/tex]?

A. [tex]\sqrt[7]{2 d^{10}}[/tex]
B. [tex]\sqrt[10]{2 d^7}[/tex]
C. [tex]2 \sqrt[10]{d^7}[/tex]
D. [tex]2 \sqrt[7]{d^{10}}[/tex]



Answer :

To find the radical expression for [tex]\( 2d^{\frac{7}{10}} \)[/tex], we need to express it in terms of radicals.

Here are the steps:

1. Start with the given expression:
[tex]\[ 2d^{\frac{7}{10}} \][/tex]

2. We can rewrite the exponent [tex]\( \frac{7}{10} \)[/tex]

3. The expression [tex]\( d^{\frac{7}{10}} \)[/tex] can be rewritten in terms of radical notation. The fraction [tex]\( \frac{7}{10} \)[/tex] indicates a 10th root (denominator) and raising to the power 7 (numerator):
[tex]\[ d^{\frac{7}{10}} = \sqrt[10]{d^7} \][/tex]

4. Therefore, the original expression can be rewritten as:
[tex]\[ 2d^{\frac{7}{10}} = 2 \sqrt[10]{d^7} \][/tex]

Thus, the radical expression for [tex]\( 2d^{\frac{7}{10}} \)[/tex] is:
[tex]\[ 2 \sqrt[10]{d^7} \][/tex]

The correct option is:
[tex]\[ \boxed{2 \sqrt[10]{d^7}} \][/tex]