Answer :

To find the value of [tex]\( x \)[/tex] that satisfies [tex]\( s(x) = 17 \)[/tex] for the function [tex]\( s(x) = \sqrt{5x + 6} + 8 \)[/tex], follow these steps:

1. Start with the given function and set it equal to 17:
[tex]\[ \sqrt{5x + 6} + 8 = 17 \][/tex]

2. Isolate the square root term:
[tex]\[ \sqrt{5x + 6} = 17 - 8 \][/tex]

3. Simplify the right-hand side:
[tex]\[ \sqrt{5x + 6} = 9 \][/tex]

4. Square both sides to eliminate the square root:
[tex]\[ (\sqrt{5x + 6})^2 = 9^2 \][/tex]

5. Simplify both sides:
[tex]\[ 5x + 6 = 81 \][/tex]

6. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ 5x = 81 - 6 \][/tex]
[tex]\[ 5x = 75 \][/tex]
[tex]\[ x = \frac{75}{5} \][/tex]
[tex]\[ x = 15 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] that satisfies [tex]\( s(x) = 17 \)[/tex] for the given function is:
[tex]\[ x = 15 \][/tex]