Answer :

Let's start by analyzing the given expression:

[tex]\[ \frac{x^{a(b-c)}}{x^{b(a-c)}} \][/tex]

We can use the properties of exponents to simplify this expression. Recall that when you divide like bases, you subtract the exponents:

[tex]\[ \frac{x^m}{x^n} = x^{m-n} \][/tex]

Here, the exponents are [tex]\(a(b-c)\)[/tex] and [tex]\(b(a-c)\)[/tex]. Applying the above property of exponents, we get:

[tex]\[ \frac{x^{a(b-c)}}{x^{b(a-c)}} = x^{a(b-c) - b(a-c)} \][/tex]

Next, distribute the terms inside the exponents:

[tex]\[ x^{a(b-c) - b(a-c)} = x^{(ab - ac) - (ba - bc)} \][/tex]

Notice that [tex]\(ab\)[/tex] and [tex]\(ba\)[/tex] are the same terms, so the expression simplifies as follows:

[tex]\[ x^{(ab - ac) - (ab - bc)} = x^{ab - ac - ab + bc} \][/tex]

Since [tex]\(ab - ab = 0\)[/tex], this simplifies further to:

[tex]\[ x^{-ac + bc} = x^{c(b-a)} \][/tex]

Now we have:

[tex]\[ x^{c(b-a)} \][/tex]

If the exponents simplify such that [tex]\(b - a = 0\)[/tex], meaning [tex]\( b = a \)[/tex], then:

[tex]\[ x^{c(0)} = x^0 = 1 \][/tex]

Thus, the original expression simplifies to:

[tex]\[ \frac{x^{a(b-c)}}{x^{b(a-c)}} = x^0 = 1 \][/tex]

Therefore:

[tex]\[ \boxed{1} \][/tex]