Select the correct answer.

The table represents function [tex]f[/tex].

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
[tex]$f(x)$[/tex] & 59 & 63 & 71 & 87 & 119 & 183 & 311 \\
\hline
\end{tabular}

Function [tex]g[/tex] is an exponential function passing through the points [tex](3, -53)[/tex] and [tex](5, -41)[/tex]. Which statement is true over the interval [tex][3, 5][/tex]?

A. The average rates of change of [tex]f[/tex] and [tex]g[/tex] cannot be determined from the given information.
B. The average rate of change of [tex]f[/tex] is greater than the average rate of change of [tex]g[/tex].
C. The average rate of change of [tex]f[/tex] is less than the average rate of change of [tex]g[/tex].
D. The average rate of change of [tex]f[/tex] is the same as the average rate of change of [tex]g[/tex].



Answer :

To answer this question, we need to determine and compare the average rates of change for both functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] over the interval [tex]\([3, 5]\)[/tex].

### Average Rate of Change of [tex]\( f \)[/tex]

The table provides the values of the function [tex]\( f \)[/tex] at specific points. We have the following data for the interval [tex]\([3, 5]\)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|} \hline x & 3 & 4 & 5 \\ \hline f(x) & 59 & 63 & 71 \\ \hline \end{array} \][/tex]

To determine the average rate of change of [tex]\( f \)[/tex] over the interval [tex]\([3, 5]\)[/tex], use the formula:
[tex]\[ \text{Average rate of change of } f = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \][/tex]
where [tex]\( x_1 = 3 \)[/tex] and [tex]\( x_2 = 5 \)[/tex].

Thus,
[tex]\[ \text{Average rate of change of } f = \frac{f(5) - f(3)}{5 - 3} = \frac{71 - 59}{5 - 3} = \frac{12}{2} = 6.0 \][/tex]

### Average Rate of Change of [tex]\( g \)[/tex]

Function [tex]\( g \)[/tex] is an exponential function passing through the points [tex]\((3, -53)\)[/tex] and [tex]\((5, -41)\)[/tex].

To determine the average rate of change of [tex]\( g \)[/tex] over the interval [tex]\([3, 5]\)[/tex], use the same formula:
[tex]\[ \text{Average rate of change of } g = \frac{g(x_2) - g(x_1)}{x_2 - x_1} \][/tex]
where [tex]\( x_1 = 3 \)[/tex], [tex]\( y_1 = g(3) = -53 \)[/tex], [tex]\( x_2 = 5 \)[/tex], and [tex]\( y_2 = g(5) = -41 \)[/tex].

Thus,
[tex]\[ \text{Average rate of change of } g = \frac{g(5) - g(3)}{5 - 3} = \frac{-41 - (-53)}{5 - 3} = \frac{12}{2} = 6.0 \][/tex]

### Comparison and Conclusion

The average rate of change of [tex]\( f \)[/tex] is 6.0, and the average rate of change of [tex]\( g \)[/tex] is also 6.0.

Therefore, the correct statement is:
[tex]\[ \boxed{\text{D. The average rate of change of } f \text{ is the same as the average rate of change of } g.} \][/tex]